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Abstract— We develop a novel optical multimodal-sensing
skin for fingers of a robotic gripper. This sensor consists of
a transparent skin made with a marked soft elastic outer layer
on a hard layer, and internal RGB cameras. The cameras can
see the external scene through the skin. This sensor provides
a contact force field estimated by tracking the markers, and
visual information of close or grasped objects. This sensor uses
off-the-shelf materials, is easy to manufacture, and is robust
against an external force as the force is not applied to the
sensing device (camera). We install a prototype of this sensor
on fingers of a Baxter robot, and demonstrate its usefulness with
a cutting vegetable task. The sensor gave us a force information
to control cutting vegetables and avoiding slippage of the knife.

I. INTRODUCTION

We are exploring whole-body vision as a sensing skin
for human-safe and improved robot control. Different types
of sensors are useful to maintain human safety, such as
proximity sensors and contact sensors. These sensors are also
useful in robust robot control. For example in the DARPA
Robotics Challenge Finals, no robots used railings, walls,
door frames, or obstacles to support the robot body [1].
Whole-body contact sensors are useful to do this. We are
proposing to cover the robot body with a transparent soft
material (skin) and put cameras inside (Fig.[(a)). Such
whole-body vision will give us multimodal information such
as a proximity (by stereo vision), visual information (color,
texture), and contact force estimation (by detecting the skin
deformation). This project is named “Argus”: Argus Panoptes
was a 100-eyed giant in Greek mythology.

This paper focuses on a sensing skin for robotic grippers
(Fig.mM(b)). We design the sensing skin for manipulation tasks
as well as grasping. We focus on a cutting task with a knife.
During cutting, sometimes a strong force is applied to the
knife when cutting a hard material, which causes the knife to
slip or damage to the fingers. Sensing skin is useful in such
a situation providing contact force estimations for avoiding
slippage and damage to the fingers, and visual information
for slippage detection.

There are many similar approaches to make a tactile sensor
with a transparent skin and an imaging sensor inside (e.g.
[21, [3], [4], [5], [6], [7]), but all of them are focusing on
tactile sensing only, i.e. contact point location and/or contact
force/pressure. Most of them are covering the skin surface
with opaque material to shut out external light. We think
transparent skin gives us richer information.
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Fig. 1. Conceptual design of our optical multimodal-sensing skin and the
installation example on a robotic gripper.

Fig. 2.
of the Baxter robot. Bottom-left: the sensing skin and the fingers. Top-
left: grasping a knife with the sensing skin. Top-right: cutting an apple.
Bottom-right: a camera view during cutting where the marker movements
are rendered.

Prototype of the optical multimodal-sensing skin on the fingers

In this paper, we make a prototype of the sensing skin.
It consists of a camera, a transparent hard layer made with
acrylic, a transparent soft layer made with silicone rubber,
and colored markers embedded near or on the surface of
the soft layer. The markers are used to help detecting the
skin deformation. A computer vision method is developed
for tracking the markers in order to estimate contact forces.
We integrate the sensing skin on the gripper of a Baxter
robot, and investigate its usefulness in a practical situation,
cutting vegetables with a knife (Fig. D).

The features of our sensing skin are as follows. It is
comparably low cost; it just uses off-the-shelf materials. It is
easy to make. The issue is the size reduction; the bottle necks
are cameras and lenses. Recently small cameras are widely



developed for various purposes including smart phones. For
example in [8], a human fingertip-size device was made with
a tiny camera. Our sensing skin is multimodal and it gives
us higher resolution of contact forces and proximity vision.
It is physically robust because the sensing element (camera)
is separated from the skin. We assume that the sensing skin
is installed on a robot by fixing the hard layer on a rigid part
of the robot. Thus the external force is applied to the soft
and hard layers only.

Related Work

The idea of using imaging sensors for tactile sensing is
decades old. An initial attempt was measuring the frustration
of total internal reflection within a waveguide on a sensor
surface caused by contact [2], [3], [9], [10]. The research
trend has shifted to measuring displacement of markers
placed on the sensor surface with computer vision [4], [5],
[11], [12], [13], [6], [14], [7]. A reason would be the marker
displacements are proportional to the external force as the
displacements are directly caused by the external force. The
resolution of the contact force field is decided by the camera
and the marker density. Recently high resolution sensors are
proposed (e.g. [15], [7]). Another idea is markerless localiza-
tion of a registered object (e.g. [15]). Such an idea does not
require markers. The localization accuracy is ideally equal
to the camera resolution. A drawback is the requirement
of registering an object. Much of the above work uses a
transparent elastic material between the sensor surface and
the base. The dynamic range of the force measurement can
be controlled by changing the hardness of the elastic material
(softer is more sensitive; cf. [16]).

Our research is close to this approach. An important
difference is the transparency of the skin including the
surface, which gives us richer and multimodal information.
Previous work uses opaque surfaces to block the external
light as it would affect marker tracking. We solve the marker
tracking problem under natural external scenes by computer
vision in order to make use of the transparent skin.

Another sensor with transparent skin is proposed in [17]
where distance sensors are used instead of a camera. The
idea is measuring distances between the sensors and an
object, and estimating the deformation of the transparent skin
from the distance map. Vertical contact forces are estimated
from the deformation. If there is no contact with an object,
this sensor simply gives the distance information to a close
object. Although this sensor and ours have different sensing
modalities and ranges, we would be able to share ideas; e.g.
we can embed distance sensors around the cameras.

Many of related research uses a hemisphere shape for
fingertip [3], [5], [111, [9], [18], [13], [6], [14], [7], [16], [10],
[19]. Their intention is making fingertips of robotic hands or
grippers. More human-like fingertips are also proposed (e.g.
an elliptical shape [12]). The surface shape should be decided
by the task. Although there is research on other shapes
such as a flat shape (e.g. [2], [4], [15]), the surface shape
requirements have not been studied enough in the context of
application tasks. The applications of optical tactile sensors

are: grasping task (e.g. [9]), estimating the surface shape
or edge of a contacting object (e.g. [13], [18], [14]), and
manipulation (e.g. rolling a cylinder [19]). In [10], the sensor
is used in a physical human-robot interaction task (passing an
object from the robot to a human). In [15], the sensor is used
in an insertion task of small parts (e.g. a USB connector into
a mating hole). We explore a flat surface and tis usefulness
in a cutting task.

II. OPTICAL MULTIMODAL-SENSING SKIN FOR ROBOT
FINGERS

A. Overview

The conceptual design of the optical multimodal-sensing
skin is shown in Fig. [l. Unlike other research [4], [6], [7], we
do not place an opaque material on the surface. The whole
skin is transparent except for the markers, and the cameras
can see the external scene through the skin.

The markers are captured by the cameras and tracked.
This gives us a 3-axis (x,y,z) force measurement at each
marker point. By combining multiple marker measurements,
we can estimate torque information. In general, a bigger
marker is easier to detect; the marker size affects the accuracy
of tracking. The density of the markers determines the
resolution of the contact force field. There is a trade-off
between the resolution and the surface transparency. The
hardness and the thickness of the elastic layer affect the
marker movement caused by contact force (a softer layer
is more easily deformed by a small force), and determine
the dynamic range of the contact force measurement. The
hard layer is assumed to be fixed on the gripper so that the
external force is applied to the elastic and hard layers only
and does not affect the cameras. The physical robustness of
the sensing skin is decided by the elastic and the hard layers.
The camera resolution affects the accuracy of the marker
detection and tracking. The camera frame rate affects the
sensing frame rate. These properties (the marker size and
density, the hardness and the thickness of the elastic and
the hard layers, and the camera properties) should reflect the
purpose (task) of each part of the skin.

B. Prototype Module of Optical Multimodal-Sensing Skin

We make a prototype module of the optical multimodal-
sensing skin for the parallel gripper of a Baxter robot. For
simplicity, we use one camera for each finger.

Fig.B shows the prototype module and its installation on
the Baxter gripper. The size of the module is about 40 mm
(W) x 47 mm (L) x 30 mm (H) including a camera module
with a USB interface. In the following, we describe the
details of making the module.

1) See-through Skin with Markers: Fig.B shows a process
to make the see-through skin with markers. First we make a
mold for the elastic layer. The fingertip edge has a rounded
shape; the other part is flat. Then we put markers on the
bottom of the mold. We use micro plastic beads of black
color for markers, that are spheres of around 1 mm diameter.
The markers are placed on a 5 mm grid. We pour silicone
rubber into the mold. We use Silicones Inc. XP-565 that
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Fig. 3. Prototype module of the optical multimodal-sensing skin (a,b) and
its installation on the Baxter gripper.
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Fig. 4. Process of making the see-through skin.

has A-16 Shore hardness after cure. Degassing the silicone
was important to keep the transparency before pouring the
silicone into the mold. Right after pouring into the silicone,
we put an acrylic plate (40 mm x 40 mm, 2 mm thickness)
with screws as shown in Fig.B(c). These screws are for
preventing the acrylic plate sinking into the silicone, and
creating a space for screw heads when attaching the skin
to the camera. The thickness of the silicone layer is 4 mm.
Fig.B(d) shows the silicone layer with the acrylic plate after
curing. Finally we cover the skin with a thin transparent
plastic film (Glad ClingWrap) to protect the silicone skin
from dirt. This film is replaceable.

2) Adding a Camera: We attach the camera to the skin.
The camera is ELP Co. USBFHDOIM-L180 which is an
RGB camera with a USB interface and a 180 degree fisheye
lens. This skin module works as a stand-alone USB sensor.
The lens is adjusted to focus on the markers, which improves
the marker tracking quality. We embed a fixture used for
integrating into the Baxter gripper in the skin. The fixture is
a L-shaped aluminum plate whose one edge is fixed on the
acrylic plate (see Fig.O(a)). Fig.B(b) shows the side and top
views of the module. In the top view, we can see the camera
through the skin; thus the silicone and acrylic layers have
good transparency.

C. Installation to Gripper Fingers of Baxter Robot

The gripper of the Baxter robot is a parallel gripper with
two fingers. We made two prototype modules and attach one
for each finger. We create a simple mount for the sensor as
shown in Fig.B(c).

D. Marker Tracking for Contact Force Estimation

We use an existing blob detection method for markers
implemented in OpenCV", cv: :SimpleBlobDetector,
that detects small blobs from an image. Each detected blob
has a position (x,y) and size in the image.

Since the camera image is distorted due to the fisheye
lens, we rectify the input image before detecting the blobs.
We use calibration methods from OpenCV.

Our marker tracking algorithm is simple. First we calibrate
the marker tracker by obtaining the initial marker positions
and sizes. In each frame, we compare the current marker
positions and sizes with the initial markers.

1) Marker tracker calibration: We use 20 frames for
marker tracker calibration where we put a white board on
the skin so that the blob detector detects only the markers.
If there are moving blobs, they are rejected. We take an
average of the remaining blob positions and sizes and keep
them as the initial markers.

2) Marker tracking: In each frame, we detect blobs from
an input image, and compare them with the initial markers.
Since the order of the blobs does not correspond with the
initial markers, we assume the closest blob to a blob in the
initial frame is the same marker. We define thresholds on
position and size differences, and if they are too large, we
reject them. For each marker position and size differences
dx,dy,ds, we estimate the contact force f as:

f = [cpdx, cyds, c.dy) (1

where ¢, ¢y, ¢, are conversion coefficients (refer to Fig. B(c)
for the coordinate definition). These coefficients are for
human readability, not for converting to regular units such
as Newtons.

We can use these contact force estimates as a force field
estimate. We can also convert them to an average force and
torque, which would be useful for simple applications. For
this, we first define a torque estimate around the center of
the skin surface as: 7 = ¢, r x f, where r is a displacement
vector from the center of the skin surface to the marker, and
cr is a conversion coefficient. For averaging f and 7, we use
the element-wise 80th percentile? of the absolute value. This
filter gives us a robust estimation against the outliers in the
marker tracking, and picks up a local force when the external
force is applied to a narrow region of the skin surface.

We programmed the above methods with as many threads
as possible. The whole process including capturing from
cameras is computed in around 30 frames per second with
two cameras whose resolution is 640x480. The computer has
an Intel Core i7 CPU (2.70 GHz, 4 cores, 8 hyper threads)
and 16 GB RAM.

III. EXPERIMENTS

We demonstrate our sensing skin in some experiments. In
these experiments we do not apply a temporal filter, which
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Fig. 5.
from the cameras. The marker movements are rendered (the movements
are emphasized).
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Fig. 6. Trajectories of the average force (X,y,z) of the left (top graph) and
the right (bottom graph) sensing skins during pushing by a human.

should be need to further reduce noise and errors. Refer to
the accompanying video.

A. Pushing Force Directly Applied to The Skin

First, we let a human push the skin horizontally (x
and z axes) for each finger respectively. Fig.H shows a
captured image (rectified) with a visualization of the marker
movements. We can see that the markers are moved, and
can see the human fingers through the skin. Fig.B shows
the trajectories of the average force (x,y,z) of the left and
the right sensing skins. In both sides, the horizontal (x and
z) forces are changing towards pushed directions. During
pushing, the vertical (y) force is changing slightly, but is
noisy. This is because the vertical force is estimated from
the marker size change and the size does not change much
compared to the horizontal marker displacement. The reason
why the value of the left sensor is changing around 20 sec
is that the human finger is contacting the skin.

B. Pushing Force Applied to Holding Knife

We make the robot hold an knife and let a human push and
pull the knife in various directions as shown in Fig. . Fig.B
shows the trajectories of the average force (x,z) and torque
(y) of the left and the right sensing skins. Each sensor value
has an offset value since the gripper is holding the knife. The
horizontal pushing (tx+, tx—) are captured by the x-force
value of the left sensor, while the second tx— (around 14 sec)
is hardly detected by the right sensor. The reason would be
that the surfaces of the sensors were not completely parallel
due to an inaccurate construction, which probably caused

Fig. 7. Experimental setup of pushing a knife held by the gripper. Pushing
directions are illustrated.
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Fig. 8. Trajectories of the average force (x,z) and torque (y) of the left
and the right sensing skins during pushing the knife.
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Fig. 9.
rotation). The left image is a view from an external camera.

Marker tracking result in pushing in the ry— direction (vertical

an asymmetric force distribution. The vertical rotational-
pushing (ry+, ry—) are detected clearly by the x-force values
of both sensors which have opposite directions because of the
torque applied to the knife. Fig. @ shows the marker tracking
result in ry—. The y-torque value captures the horizontal
rotational-pushing (rz+, rz—), however it seems to have a
large hysteresis.

C. Force Profile of Cutting Motion by Human

Next, we let a human hold a knife with the sensing skins.
For this purpose, we detach the fingers from the robot and
let the human hold the entire finger with the knife as shown
in Fig.M. The human cuts a banana and an apple. Fig.
shows the trajectories of the average force (x,z) and torque
(y) of the left and the right sensing skins. The first half is
cutting a banana several times, and the last half is cutting



Fig. 10. Setup of the cutting motion by a human. The human holds the
sensors with a knife, and cuts materials. The left view shows an example of
cutting an apple, and the right two images are views of the sensing skins.
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Fig. 11. Trajectories of the average force (x,z) and torque (y) of the left
and the right sensing skins during cutting a banana and an apple by the
human. In the first short period, the human grasped the knife, and then cut
the banana and the apple.

an apple. There is a significant difference between cutting
the apple and banana. There are subtle sensor value changes
during cutting the banana because of the softness of banana.
The human cut the apple with “sawing” while the banana
was cut by just pushing the knife down.

D. Robotic Cutting Motion with Sensing Skin

We implemented an automatic cutting motion with the
sensing skin. Through our preliminary experiments where we
controlled the robot manually with a joy stick controller, we
found these difficulties: (1) When cutting a hard material,
a strong vertical force was applied to the knife, which
deformed the grasp (cf. Fig.M(a)). (2) When a force was
applied to the knife horizontally, the knife slipped in the
gripper (cf. Fig.[2(b)). In this experiment, we show that
using our sensing skins, we can easily make a controller to
avoid these difficulties. Note that even if (1) or (2) happens,
the visual views through the skin tell us something happened.
For example, look at the camera view of Fig. [Z(b); we can
find that the angle of the knife is different from its initial
grasp position.

We created a cutting controller which (a) starts from a
state where the knife held by the gripper is put above the
material, (b) moves the knife downward (cutting vertically),
and then (c) slightly pulls the knife (cutting horizontally).
The controller moves the knife to the initial position in order
to repeat the motion several times. The difficulties (1) and
(2) might happen in the step (b). To avoid them, we consider

- ) = WA “Camera view
(a) Grasp of knife (b) Knife slipped
deformed on the skin
Fig. 12. Difficulties in cutting.
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Fig. 13. Trajectories of the average force (x,z) and torque (y) of the left

and the right sensing skins during cutting a banana by the robot. There was
a single cutting motion around the peak of left x-force.
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Fig. 14. Trajectories of the average force (x,z) and torque (y) of the left
and the right sensing skins during cutting an apple by the robot. The robot
performed the cutting motion four times to cut the apple completely. The
peaks of left and right x-force correspond with the cutting motion.

conditions to stop the motion: (A) if —(fL. — fLz0)(fRz —
frz0) > 10, or (B) if |Try| + |TRy| > 4, Where fi, and frs
indicate the x-value of the average force of the left and the
right sensors, f1,.0 and fr.( indicate their initial values (right
before cutting), and 71, and 7R, indicate the y-value of the
average torque of the left and the right sensors. The condition
(A) is defined according to the result of ry— in Section [T
B where the vertical force was applied to the knife. The
condition (B) helps to avoid rotational knife slip.

Fig.[3 and Fig. T4 shows the sensor values during cutting
a banana and an apple respectively where the trajectories of
the average force (x,z) and torque (y) of the left and the right
sensing skins are shown. Since cutting a banana requires only



Fig. 15.
image is a view from an external camera.

Marker tracking result in cutting an apple by the robot. The left

a small force, the robot cut it with a single trial, while the
robot took four trials in cutting an apple. In the banana case,
the robot stopped moving the knife because the condition (A)
was satisfied as the knife hit the cutting board. In the apple
case, the condition (A) was mainly satisfied by the pressure
from the cut edge of the apple fresh. In these graphs, the
condition (B) was not satisfied, but it was useful when the
initial knife orientation was not perpendicular. Fig. 3 shows
a marker tracking result in cutting an apple. Although the
cutting motion is simple, it was capable to cut materials while
avoiding the above difficulties (1), (2).

IV. DISCUSSION

1) Should we convert the force estimate to an engineering
unit (e.g. Newtons)?: This depends on the application. We
are planning to use machine learning methods to learn the
dynamical models (relation between input gripper motion
and output force changes) for example by using neural
networks [20]. In such a case, obtaining contact force in-
formation in engineering units is not necessary. Consistent
estimates are important. However using an engineering unit
will be generalizable to other situations and other robots, so
it will be still useful.

2) Accuracy, reliability, and hysteresis: Although we did
not conduct a controlled evaluation, the horizontal force
seems to be reliable. The marker movement in a horizontal
direction is easier to track. The vertical force seems to be
more difficult to detect as the changes of the marker visual
size are comparably smaller. Perhaps we can use the vertical
force estimate as an on/off signal. A way to improve the
vertical force accuracy is increasing the thickness of the
elastic layer, although it would make the skin heavier.

In the experiments, there were some false detections of
the markers. These were mostly due to the external scene.
Increasing the number of markers is helpful for removing
outliers, although it will reduce the transparency accordingly.
Putting an internal light source would be helpful in dark
scenes.

We found hysteresis, especially when a strong force was
applied. In the cutting vegetable experiments by the robot,
the force estimate changed before and after cutting a hard
material. This would be because the deformation of the soft
layer remained. This was mostly reset after releasing the
knife.

3) Calibration frequency: During the experiments of the
previous section, we did the calibration of the marker track-
ing only twice. The first one was the initialization. The

second one was necessary due to the accidental separation
of the soft layer and the acrylic base.

4) Physical robustness: A weak part of the sensor is
the adhesion between the soft skin and the acrylic base.
Currently we rely on the sticky property of the silicone
rubber. It was strong enough against horizontal forces and
downward forces from above, but the skin can be easily
peeled by upward forces from below. This issue would be
solved by an adhesive between the layers.

Other than that, the sensor strength is decided by the
acrylic base hardness and the soft skin. For heavier tasks
where larger contact forces will be applied, we would need
a thicker acrylic base. Although the soft skin is weak against
something with thin tips (e.g. needle) or sharp edges (e.g.
knife), the hardness is close to that of the human skin. Thus
we think it is strong enough for daily manipulations.

V. CONCLUSION

We developed an optical multimodal-sensing skin for robot
fingers. The sensor structure is simple: a transparent skin
made with a marked soft elastic outer layer on a hard layer,
and internal RGB cameras. The important feature is the see-
through skin that provides visual information of a close
object. We installed a prototype of the sensor on fingers
of a Baxter robot, and used it in a practical task, cutting
vegetables. The sensor gave us a force estimate to control
cutting vegetables and avoiding slippage of the knife.
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