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Abstract : We report a case study of model-based reinforcement learning with a library of skills in a peeling banana task. We
summarize our methods and the experiments, and describe a comprehensive understanding of the features of our methods.

1. Introduction

Recent research progress makes artificial intelligence tools
stronger, but it is still an open challenge to achieve com-
plicated manipulation tasks such as cooking [1], peeling
vegetables and fruits [2], and pouring liquids [3]. Based
on the insight that we should represent and reason about
alternative skills [3, 4], we are hypothesizing that com-
bining symbolic representations (skills), and low-level
reasoning and learning is a promising approach.

In this research, we chose a banana peeling task as
an example task. It is complicated manipulation since
bananas consist of deformable, elastic, and breakable
components, each banana has different properties, and
the property (e.g. softness of skin) changes even during
manipulation. So far, we have:
◦ Developed a reinforcement learning method based

on a library of skills [5].
◦ Developed a framework to use human actors to

quickly implement and test perception and control
algorithms [6, 5].

◦ Implemented a banana peeling system and conducted
experiments [6, 5].
In this paper, we describe comprehensive understand-

ing of these studies. We begin with summarizing our re-
inforcement learning method, the framework to use hu-
man actors, and the implementation and experiments.

2. Model-based Reinforcement

Learning with Skill Library

This section summarizes our reinforcement learning method
with a library of skills [5]. It is a method to learn and
generate robot behaviors based on a given library of
skills. Each skill is defined as a control policy with pa-
rameters; the parameters adjust the skill for different
situations. We consider alternative skills, for example a
tipping and a shaking skills for a pouring task. There is
work focusing on acquiring skills [7], while our method
focuses on how to combine learned primitive skills in
solving complicated tasks. The problem solved here can
be formulated as follows: for a given task represented by
reward functions, find a combination of skills and their
parameters such that the sum of rewards is maximized.

We consider situations where a part of the dynamics
are not known in advance, i.e. this problem is reinforce-

ment learning. We take a model-based approach, i.e. we
train regression models of dynamics and generate a pol-
icy by solving dynamic programming with the learned
models.

The proposed method unifies symbolic reasoning [8]
and dynamic programming for graph-structured dynam-
ical systems [9]. The problem to find a combination of
skills is a form of symbolic reasoning, but it is difficult to
completely remove the ambiguity of skill selections (al-
ternative skill selections) with symbolic reasoning. In-
stead of a linear sequence of skills, we allow symbolic
reasoning to find a graph structure of skills which in-
cludes alternative skill selections (behavior graph). On
the other hand, unlike standard dynamic programming,
graph dynamic programming [9] searches for selections
of skills and skill parameters where the skills have a di-
rected graph structure. Thus, by combining the ambigu-
ous symbolic reasoning and graph dynamic program-
ming, we can find a complete plan consisting of a se-
quence of skills and their parameters. From the result of
executing the plan, we can update the dynamics mod-
els of the skills. Fig. 1 illustrates the overview of the
proposed method.

The proposed method automates behavior genera-
tion of complicated tasks with a given set of skills. Com-
pared to a hand designed policy, our approach may make
behaviors more robust. There are a number of similar
approaches such as skill-based approaches [10], hierar-
chical reinforcement learning [11, 12], policy decompo-
sition and composition [13, 14, 15], a unified framework
of symbolic task planning and geometric motion plan-
ning [16, 17]. The advantages of the proposed method
are: (1) The skill library may include non-homogeneous
skills, i.e. each parameterized skill may have a differ-
ent time scale, state, and control spaces. A skill also
may consist of the other skills. (2) The planning of the
behavior considers the dynamics of the objects and the
robot, which makes the proposed method applicable to
manipulation tasks with non-rigid objects, for example
peeling bananas and pouring liquids.

3. Human Actor in the Loop

In recent years, robot programming is becoming eas-
ier thanks to middleware such as the robot operating
system (ROS). However it is still complicated and takes
long time to implement a complicated manipulation task



Fig. 1: Overview of our model-based reinforcement
learning with skill library.

Fig. 2: Left: Typical robotic system for manipulation.
Right: Conceptual illustration of the proposed frame-
work.

like banana peeling. Such an implementation includes
robotic arms, hands, perception systems (vision, tac-
tile), and motion control, and implementing each of
them has different difficulties. In order to reduce such
complexity, we developed a framework to use human ac-
tors who follow computer-generated instructions rather
than using robots [6].

Figure 2 shows the conceptual illustration of the pro-
posed framework compared with a typical robotic sys-
tem for manipulation. Both of them have the same
perception system and controller. However, the robot
is operated by commands, while a human actor obeys
control instructions generated by the controller.

The design of the control instructions is important.
The instructions should be human understandable, and
ambiguity should be reduced as much as possible so that
different human actors perform the instructions simi-
larly. We chose to combine a text instruction and a

Fig. 3: Result of manipulation with the proposed
method.

graphical user interface (GUI) to represent the control.
For example, the grasping position and orientation are
indicated through the GUI.

4. Experiments

In order to investigate how the proposed methods work,
we applied them to a banana peeling task. We used hu-
man actors to implement the task. For simplicity, we
considered peeling bananas on a table where the mo-
tions are performed in 2D. An RGB camera was used to
perceive the banana state including the main body pose,
end point positions, and flesh area. A monitor was used
to display the control instructions with text and GUI.

From observations of humans peeling bananas, we
designed the skill library with four skills: Grasp, Twist,
Pull, and Release. For each skill, we designed symbolic
dynamics models (precondition {0, 1} = B(Xk, Ak) and
effect Xk+1 = E(Xk, Ak)) and a numerical dynamics
model xk+1 = F(xk,ak). Some of them were designed
manually, and the others were modeled with neural net-
works. We considered the goal of the banana peeling
task to be exposing the flesh area to the maximum. The
reward function was designed as the flesh area.

During the experiment, each subject was asked to
act as a human actor and execute the control instruc-
tions generated by the system. Before the experiment,
each human actor was trained enough to become fa-
miliar with the GUI and text instructions. We used
two control methods: one is the proposed reinforcement
learning method, and the other is a manually-designed
policy modeled with a state machine.

Fig. 3 shows an example of peeling behavior. The
results of the experiments demonstrated that: (1) The
framework to use human actors instead of robots worked
to implement a complicated manipulation task. (2) With
both control methods, our system peeled bananas suc-
cessfully. (3) Our reinforcement learning controller was
more efficient than a manually designed policy. The rea-
son is that our method optimizes the skill parameters for
the current state, while the manually designed policy
uses pre-optimized parameters. (4) Our reinforcement
learning controller was robust which was able to handle
unexpected situations, such as flicking back of a banana
skin due to its elasticity.



5. Discussions

5.1 Model-based Reinforcement Learn-

ing with Skill Library

The comparison of the model-based and model-free ap-
proaches discussed in [18] can be summarized as fol-
lows: (1) Model-based learns models of forward dynam-
ics, while model-free directly learns policy. (2) Learning-
complexity of model-based is supervised learning, while
that of model-free is reinforcement learning. (3) Planning-
complexity at execution of model-based is dynamic pro-
gramming, while model-free does not require planning at
execution. (4) Model-based is suffered from intractabil-
ity of dynamics (simulation bias [19]). Model-free tends
to acquire higher performance, and is more robust to
POMDP. (5) Model-based is considered to generalize the
learned behavior over wider situations than model-free.
(6) Model-based is easier to share (reuse) learned com-
ponents among different tasks than model-free, since the
forward models are independent from tasks. A tech-
nique like importance sampling is necessary to reuse a
policy in other tasks. Similarly, model-based is easier to
modify the design of reward functions in the same task.

Since our reinforcement learning library takes a model-
based approach, it inherits the features of model-based.
For example, we were able to train each dynamics model
independently without running complete peeling. It was
also possible to redesign the reward functions after learn-
ing dynamics. Introducing skill library gives following
advantages: (7) Representing a behavior with skills is
considered as a temporal and spatial segmentation of
behavior. It reduces the number of iterations of tempo-
ral integration, which leads the reduction of simulation-
bias. (8) Efficiency to generate complicated behaviors is
increased. For example, it was able to achieve a peeling
banana task. (9) Robustness to adapt to various situ-
ations is increased. For example, it was able to handle
failure recoveries in peeling banana.

On the other hand, the drawbacks are: (10) Many of
dynamics (symbolic and numerical) are modeled manu-
ally. Due to that, the controller encountered unexpected
situations, such as breaking body and skin, and flicking
back of skin caused by the elasticity of skin. (11) Be-
havior graph will become complicated when we consider
more skills, symbolic states, and actions, which will in-
crease the planning complexity.

The first drawback may be solved by learning more
models [20], although it will increase the learning cost.
Ideas to tackle to the second one include introducing a
hierarchy into symbols in order to shrink the graph size,
and combining model-based and model-free approaches
to reduce the planning cost.

6. Human Actor in the Loop

The followings are comparisons of a human-actor sys-
tem and a robot system: (1) Implementation of skills for
human actors takes a few weeks, while that for robots

takes months to years. (2) Setup of experiments takes
hours for both systems. The human actor system re-
quires training time of actors, typically 0.5 to 1 hour
per actor. (3) Human actors become tired and impa-
tient after long run, while robots are stable in long run.
(4) Maximum working time of human actors will be a
few hours per day. Robots can work 24 hours. (5) Hu-
man actors are adaptive to situations, while robots are
strict to commands. (6) Human actors behave with
small feedback gain, while robots are typically operated
with high feedback gain. (7) We typically use some hu-
man actors per experiment each of who has different
physical and geometrical properties, while we use a sin-
gle robot. (8) Commands for human actors can be am-
biguous, while commands for robots should be accurate
and detailed.

The advantages of the framework to implement ma-
nipulation tasks using human actors are summarized as
follows: (9) It can handling complicated manipulation
tasks such as banana peeling. (10) We can quickly im-
plement and test the system, perception (computer vi-
sion), and control strategies. (11) Control commands
can be ambiguous: it decreases the implementation cost.
An example is a grasp skill.

On the other hand, there would be following dis-
advantages: (12) At each experiment, we need to train
each subject (human actor) who may forget the training
after some weeks. (13) Hundreds of trials are difficult
to perform with human actors. Note that it does not
mean that we can easily conduct such number of trials
with robots. Cost of non-invertible materials (such as
bananas) is the same for both systems. (14) Ambiguity
of commands will cause disturbances of results.

7. Summary

This paper summarized our study of reinforcement learn-
ing with skill library, using human actors in implement-
ing complicated manipulation tasks, and the application
to a banana peeling task. Based on them, we described
a comprehensive understanding of the features of our
methods.
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