
A Novel Robot-Task-Description for a Variety of Dynamic Behaviors

Akihiko Yamaguchi and Tsukasa Ogasawara

Abstract— This paper aims to unify the “robot language”
approach and the reinforcement learning (RL) framework in
order to design behaviors of robots with a simple description.
We develop a kind of robot language where we describe a
robot task, then the robot employs an RL method to acquire
the corresponding behavior. The remarkable feature of this
approach is that we do not have to specify the procedure of the
behavior, and the models of the environment and the robot. To
accomplish this approach, we employ the C++ RL library SkyAI
as the base system, then we extend the SkyAI’s script interface
so that we can describe tasks simply. In this mechanism, a
task is described with several event-driven functions where the
reward and the end-of-episode condition are defined. As the
demonstration, we design six kinds of behaviors for a humanoid
robot; a crawling, a handstanding, a jumping, a forward rolling,
a backward rolling, and a turning task.

I. INTRODUCTION

In the early stage of the robotics research, “robot lan-
guages” are developed in order to flexibly describe tasks
(e.g. [1]). In such a robot language, the models of the robot
and the environment, and the procedure of a task should be
described, which is difficult for non-expert users. In addition,
it is difficult to use such a language for describing dynamic
behaviors, such as crawling and jumping.

On the other hand, reinforcement learning (RL) is a
promising tool to design the behaviors of robots, including
dynamic behaviors [2], [3], [4], [5]. Using RL methods, we
can design a behavior with a reward function that encodes
the task objective, which may be easier and more intuitive
than describing the task procedure. In addition, we need
not to model an environment and the robot explicitly. The
most successful way to design the task is based on imitation
or teaching by demonstration (e.g. [6]). However, such an
approach is applicable only for the tasks that a human can
demonstrate.

This paper aims to unify the both approach; we develop a
kind of robot language where we describe a task, but we need
not to specify the models and the procedure. We employ an
RL method to enable the robot to acquire behaviors without
the models and the procedure (i.e. the policy). In this paper,
we focus on developing a task description mechanism in
order to tell the purpose of task to a robot.

Specifically, we employ the C++ RL library SkyAI [7] as
the base system, and extend its script interface so that we
can describe the task objective simply. In this mechanism, a
task can be described as the reward description and the end-
of-episode condition. Each of them is evaluated in several

A. Yamaguchi and T. Ogasawara are with Graduate School of
Information Science, Nara Institute of Science and Technology,
8916-5, Takayama, Ikoma, Nara 630-0192, JAPAN {akihiko-y,
ogasawar}@is.naist.jp

Fig. 1. Simulation model of a humanoid robot.

event-driven functions such as each time-step and each end-
of-action. According to a given description of the task, the
robot evaluates its behavior and optimizes it by using an RL
algorithm. Thus, using this mechanism, the user can design
a behavior only by describing its task setup.

In order to demonstrate that the proposed description
mechanism can design a variety of dynamic behaviors,
we design six kinds of behaviors for a humanoid robot;
a crawling, a handstanding, a jumping, a forward rolling,
a backward rolling, and a turning task. The experimental
results show that the robot acquires behaviors as we have
expected. We also compare the local maxima of behaviors.

This paper is organized as follows: Section II proposes
the task description mechanism. Section III describes how to
realize the proposed task description with SkyAI. Section IV
demonstrates the experimental results. Section V discusses
the task description and the acquired behaviors. Section VI
concludes this paper.

II. TASK DESCRIPTION MECHANISM

Using the RL framework, we can design a task by a
reward function and an end-of-episode condition, rather than
specifying the policy. In this section, we discuss how to
describe such task information. First, let us consider two
examples: a crawling task and a jumping task. Then, we
make clear how to describe tasks in a general manner. At
the end of this section, we discuss a way to realize a robot
system that accomplishes the task descriptions.

A. Task Examples

We employ a humanoid robot since the robot can perform
a variety of motions. Fig. 1 shows the simulation model used
in the following experiments.

The robot has 18 links and 17 joints. The sensor input
of the robot consists of the global position (c0x, c0y, c0z)
(the center-of-mass of the body link), the global orientation
in quaternion (qw, qx, qy, qz), their velocities (ċ0x, ċ0y, ċ0z,
ωx, ωy, ωz), the joint angles (q0, . . . , q16), the joint angular
velocities (q̇0, . . . , q̇16), and the contact-with-ground flags
(0 or 1) of links (cg0, . . . , cg17). The corresponding control

command input ũw is the target joint angles, which is denoted
as (qtrg0 , . . . , qtrg16). Note that we can also directly control the
joint torques.

a) Crawling Task: The objective of the crawling task
is to move forward as fast as possible. According to the
objective, the reward is designed as follows:

r(t) = rmv(t)− rrt(t)− rsc(t)− rfd(t) (1)
rmv(t) = 0.25(ċ0x(t)ez1(t) + ċ0y(t)ez2(t)) (2)
rrt(t) = 0.025|ωz(t)| (3)

rsc(t) = 4× 10−9‖ũ(t)‖ (4)

where rmv(t) is the reward for forward movement,
(ez1, ez2, ez3)

> is the z-component of the rotation matrix
of the body link, rrt is the penalty for rotation, rsc(t) is the
step cost, rfd(t) is the penalty for falling down. rfd(t) takes
4 if the body or the head link touches the ground, otherwise
it takes 0. rfd(t) has a non-zero value once in each action.
Each episode begins with the initial state where the robot is
standing up and stationary, and ends if t > 20[s] or the sum
of reward is less than −40.

b) Jumping Task: The objective of the jumping task is
to jump as high as possible and to keep jumping as long as
possible. According to the objective, the reward is designed
as follows:

r(t) = rjp(t)− rsc(t)− rfd(t) (5)
rjp(t) = 0.25c0zAir (6)

rsc(t) = 4× 10−9‖ũ(t)‖ (7)

where Air takes 1 if the robot floats and takes 0 otherwise,
rjp(t) is the reward for jumping, rsc(t) is the step cost for the
torque usage, rfd(t) is the penalty for falling down. rfd(t)
takes 2 if the body or the head link touches the ground,
takes 1 if the other links other than feat touch the ground;
otherwise it takes 0. rfd(t) has a non-zero value once in each
action. Each episode begins with the initial state where the
robot is standing up and stationary, and ends if t > 5[s] or
rfd(t) has a non-zero value.

B. General Task Description

A general way to describe such rewards and end-of-
episode conditions is to define several event-driven functions.
Here, the event means an occurrence on the time axis; for
example, each action start, each action end, each time-step
start, each time-step end, each episode start, and so on. Each
event-driven function is executed when the corresponding
event happens, and computes a part of the reward and
the end-of-episode condition. We refer to an event-driven
function as an event callback.

For instance, the crawling task can be specified by the
following three event callbacks:
start-of-episode :

SumR = 0 /∗ sum of reward ∗/

start-of-action :
flag = false /∗ no falling down ∗/

end-of-time-step :

Reward = 0.25(ċ0x(t)ez1(t) + ċ0y(t)ez2(t))

Reward = Reward − 0.025|ωz(t)| − 4× 10−9‖ũ(t)‖
if ¬flag ∧ (cg0 ∨ cg1) then
flag = true /∗ fall down ∗/
Reward = Reward − 4 /∗ falling-down penalty ∗/

SumR = SumR + Reward /∗ update sum-of-reward ∗/

if (SumR < −40) ∨ (time > 20) then
EndOfEps = true /∗ end of episode ∗/

where cg0 and cg1 denote the contact-with-ground flags of
the body and the head link, ∧ denotes a logical conjunction
(“and”), and ∨ denotes a logical disjunction (“or”). In each
event callback, the reward variable Reward and the end-of-
episode flag EndOfEps may be computed using some sensor
variables; Reward and EndOfEps are initialized to zero
and false at the beginning of each callback. The assigned
Reward is summed during each action, and the amount is
used as the reward signal for an RL agent. Once EndOfEps
is true, the current episode is terminated. The flag flag is
introduced so that the falling-down penalty is given less than
once in an action.

Similarly, the jumping task can be specified as follows:
start-of-action :

flag1 = false /∗ no falling down ∗/

flag2 = false /∗ no falling down ∗/

end-of-time-step :
Reward = −4× 10−9‖ũ(t)‖
if ¬(∨cg0:17) then
Reward = Reward + 0.25c0z

if ¬flag1 ∧ (∨cg0:1) then
flag1 = true /∗ fall down ∗/
Reward = Reward − 2 /∗ falling-down penalty ∗/
EndOfEps = true /∗ end of episode ∗/

if ¬flag2 ∧ (∨cg2:7,8:11,13:16) then
flag2 = true /∗ fall down ∗/
Reward = Reward − 1 /∗ falling-down penalty ∗/
EndOfEps = true /∗ end of episode ∗/

if time > 5 then
EndOfEps = true /∗ end of episode ∗/

where cgh:i,j:k denotes a vector (cgh, . . . , cgi, cgj , . . . , cgk),
and ∨cgi:j denotes the logical disjunction cgi∨· · ·∨cgj . Thus,
∨cg0:17 is true if at least one link contacts with ground.

C. Realization

In order to realize a robot system that accomplishes the
task descriptions, we need an RL implementation for robots
with a script interface. For this purpose, the SkyAI library
[7] is the best solution since it has been already applied to
robot-learning domains including tasks of actual robots, and
it has a script interface. Thus, we employ SkyAI as the base
system.

There may have been the other approaches; for example, it
is possible to use PyBrain [8] which is an RL library written
in Python or RL-Glue [9] which is a language-independent
software package for RL experiments. The reason why we
choose SkyAI rather than these alternatives is that SkyAI

is implemented in C++ as a modular architecture which
is suitable for robot-learning domains, and it already has
a script interface which enables us to implement the task
description in a little extension.

III. TASK DESCRIPTION USING SKYAI

In this section, we make clear how to realize the task
description based on the SkyAI library. Though SkyAI has
a script interface, it is difficult to describe the above event-
callbacks with this script. Thus, we need to extend the script
interface. In the following, first, we describe the overview of
the SkyAI library [7]; then, we discuss the difficulty of the
old script interface in terms of the task description; finally,
we describe the extension.

A. Overview of SkyAI

The most important feature of SkyAI is modularization
of the RL or the other machine-learning algorithms. The
modular architecture enables the high reusability and the high
extensibility.

SkyAI is designed for robot-learning domains; real robot
systems require a high-speed execution. To achieve this,
SkyAI is implemented in C++. Each module is implemented
as a class of C++. The classes communicate with each
other through member functions. We basically use call-by-
reference in these functions for the high-speed communica-
tion.

In order to achieve the high flexibility, the modular struc-
ture should be changed during execution after compiling
the source code. SkyAI wraps the C++ class system, since
the member functions for the inter-class communication are
needed to be connected and disconnected. Thus, each mem-
ber function is encapsulated as a port class. Each module
can have any number of ports. Ports can be connected and
disconnected at any time in execution, which enables to
reconfigure the modular structure.

A script language is defined to provide an interface of
modular manipulations during execution. Specifically, instan-
tiating modules, connecting ports, and setting parameters of
the modules (e.g. a learning rate) can be specified in the
script language. We refer to the script of SkyAI as an agent
script.

Fig. 2 illustrates an example modular structure around an
RL module. In an on-line learning system, there are several
kinds of cycles, such as episode, action, and time step of low-
level controller. The SkyAI modular architecture can handle
any kinds of cycles as shown in Fig. 2.

The SkyAI architecture enables to separate domain-
specific modules and generic modules. The domain-specific
modules are a low-level robot controller and a task module.
On the other hand, RL algorithms can be implemented as
generic modules.

B. Problem of SkyAI’s Task Description

In the original SkyAI architecture, there have been two
ways to define a task:

Fig. 2. Example modular structure around an RL module.

Implementing a task module in C++: A task module is de-
fined as a module of SkyAI that includes signal ports
emitting reward and end-of-episode flag (see Fig. 2).

Using basic calculation modules: SkyAI provides a num-
ber of basic calculation modules, such as addition, mul-
tiplication, square, vector operations, logical operations,
and so on. Combining these modules, we can describe a
reward and a end-of-episode condition.

In both ways, we can represent the same information as
described in Section II-B. However, implementing a task
module in C++ depresses the flexibility; the user needs to
recompile the system in order to make the task module
available. On the other hand, the user can define a task
without recompiling by using basic calculation modules.
However, many basic modules are required to describe a task,
which is very complicated for the user.

C. Extension for Task Description

A better idea to define a task is writing the task definition
directly in the SkyAI’s script, as we described in Section II-
B. Such a description mechanism should be compatible with
the modular architecture of SkyAI. Thus, we implement a
universal task module that is a core mechanism to define a
task. In addition, though the script interface originally has
had a mechanism for defining a function, the mechanism
is not enough to define the callbacks as we discussed in
Section II-B. Thus, we also extend the script interface of
SkyAI.

1) Universal Task Module: This module has several slot
ports that are called by event signals, such as each episode
start, each action start, and so on. In the slot port of each
event, the corresponding callback function defined in an
agent script is executed. In the agent script, we can define
any number of instances of the universal task module, and
each of the instances can have individual callbacks. Thus,
by introducing the universal task module, we can define any
kinds of tasks in the same agent script; such definition can
be done dynamically during execution.

Fig. 3 shows the universal task module defined for the
simulated humanoid robot. In order to make the sensor

Fig. 3. Universal task module of SkyAI.

variables available in the callbacks, some sensor input ports
are defined.

2) Extension of Script Interface: In order to define the
reward functions and the end-of-episode conditions, at least,
the following two extensions are needed:
Equation parser: For writing the equations of reward func-

tions and end-of-episode conditions, we implement a
equation parser for the script interface.

Control syntax: In reward and end-of-episode definitions,
control flow statements are useful; at least, “if/else”
statements are required. Thus, we implement a control
syntax of the script interface.

Fig. 4 shows an example of callback functions written in
an agent script, which describes the crawling task. The reason
why there are many explicit casts is that the mechanism to
manipulate the C++ variables from the script is designed to
enhance the computation speed. The user can register such
functions with an instance of the universal task module.

D. Applying to the Other Robot Systems

The other robot systems have different sensor input that
will be used to define a reward and a end-of-episode condi-
tion. Thus, another universal task module should be defined
for the other robot system. Such a new universal task module
is considered to have many similar mechanism with the
universal task module for our humanoid robot in Fig. 3. Thus,
SkyAI provides a base class written in C++, and an individual
universal task module for each robot system is inherited from
the base class. An inherited universal task module is available
by adding some sensor input ports.

IV. DEMONSTRATIONS

Using the implemented task description mechanism in
SkyAI, we design six motion-learning tasks of the humanoid
robot introduced in the previous section. The tasks are a
crawling, a handstanding, a jumping, a forward rolling, a
backward rolling, and a turning task. The whole source codes
are available on the SkyAI’s website: http://skyai.
org. A video of the experimental results is available on the
author’s website1.

We use a simulated humanoid robot shown in Fig. 1. Its
height is 0.328m. It weights 1.20kg. Each joint torque is

1http://robotics.naist.jp/˜akihiko-y/movs/
SkyAI-6tasks.mp4

def episode_start(task_id)
{

task_id.memory ={TmpR1= 0.0; TmpR2= 0.0;}
// sum-of-reward, total-time

}
def action_start(task_id)
{

task_id.memory ={TmpB1= false;} // no falling down
}
def timestep_end(task_id)
{

task_id.memory ={
Reward= 0.25*(
cast<real>(BaseVel[0])*cast<real>(BaseRot[(0,2)]) +
cast<real>(BaseVel[1])*cast<real>(BaseRot[(1,2)]))

Reward= cast<real>(Reward) -
0.025*fabs(cast<real>(BaseVel[5]))

}
if(!cast<bool>(task_id.memory.TmpB1) &&

(cast<bool>(task_id.memory.ContactWithGround[0]) ||
cast<bool>(task_id.memory.ContactWithGround[1])))

{
task_id.memory ={

TmpB1= true // fall down
Reward= cast<real>(Reward) - 4.0

// falling-down penalty
}

}
task_id.memory ={

TmpR1= cast<real>(TmpR1) + cast<real>(Reward)
// update sum-of-reward

TmpR2= cast<real>(TmpR2) + cast<real>(TimeStep)
// update total-time

}
if(cast<real>(task_id.memory.TmpR1) < -40.0 ||

cast<real>(task_id.memory.TmpR2) > 20.0)
{

task_id.memory ={EndOfEps= true;} // end of episode
}

}

Fig. 4. Callback functions that describe the crawling task. The keyword
def denotes to define a function.

limited to 1.03Nm, and a PD-controller is embedded on it.
The dynamics simulation is calculated with a time step δt =
0.2[ms]. Experiments are performed in simulation using a
dynamics simulator ODE (Open Dynamics Engine; http:
//www.ode.org).

For the RL method, we employ the Peng’s Q(λ)-learning
algorithm [10], which is an on-line RL method, i.e. the
update procedure is applied after each action. As the action
space, we use DCOB [11] which is a discrete action set
efficient in learning from scratch. As the basis functions,
we use Normalized Gaussian Network [12] which is a
popular function approximator in RL applications. As the
DoF (degree of freedom) configurations, we use a 4-DoF
configuration (one DoF for each leg) in learning the turning
task, and a 5-DoF configuration (some joints are coupled to
be bilaterally symmetric) otherwise. The detailed description
of the DoF configurations is written in [13].

A. Crawling Task

The crawling task is the same as defined in Section II-
A. Fig. 5(a) shows the resulting learning curves, where
two curves are highlighted whose snapshots are shown in
Fig. 5(b) and 5(c). As shown in Fig. 5(a), there are some
kinds of local maxima. In each run, the robot moves forward
by crawling. The difference is the forward speed of crawling.
The speed of the 4-th episode (Fig. 5(c)) is much faster than
that of the 3-th episode (Fig. 5(b)). In the faster behavior, the
robot seems to be moving its body more dynamic than in the
slower behavior.

http://skyai.org
http://skyai.org
http://robotics.naist.jp/~akihiko-y/movs/SkyAI-6tasks.mp4
http://robotics.naist.jp/~akihiko-y/movs/SkyAI-6tasks.mp4
http://www.ode.org
http://www.ode.org

(a) Resulting learning curves of the crawling task. Each curve shows the
return per episode in a run. Two curves are highlighted whose snapshots are
shown below.

(b) Snapshots of 3-th run (ex3).

(c) Snapshots of 4-th run (ex4).
Fig. 5. Results of learning the crawling task.

B. Handstanding Task

The objective of the handstanding task is to support the
body on the hands and the head with keeping the torso and
the legs vertically in the air. According to the objective, the
reward is designed as follows:

r(t) = rhs(t)− rmv(t)− rsc(t)− rfd(t) (8)
rhs(t) = 0.25c0z(t)Air (9)
rmv(t) = 0.0025‖(ċ0x(t), ċ0y(t))‖ (10)

rsc(t) = 4× 10−9‖ũ(t)‖ (11)

where Air takes 1 if the hands and the head touch the
ground and the torso and the leg links are in the air, and
takes 0 otherwise. rhs(t) is the reward for handstanding,
rmv is the penalty for xy-movement, rsc(t) is the step cost.
Each episode begins with the initial state where the robot is
standing up and stationary, and ends if t > 5[s].

Fig. 6(a) shows the resulting learning curves, where three
curves are highlighted whose snapshots are shown in
Fig. 6(b), 6(c), and 6(d). As shown in Fig. 6(a), there are
some kinds of local maxima. The acquired behavior of
the 12-th episode (Fig. 6(c)) is the handstanding that we
expected. In the 13-th episode (Fig. 6(d)), the robot failed
to pull up the torso. In the 7-th episode (Fig. 6(b)), the robot
swings the body.

C. Jumping Task

The jumping task is the same as defined in Section II-
A. Fig. 7(a) shows the resulting learning curves, where
three curves are highlighted whose snapshots are shown in

(a) Resulting learning curves of the handstanding task. Each curve shows the
return per episode in a run. Three curves are highlighted whose snapshots
are shown below.

(b) Snapshots of 7-th run (ex7).

(c) Snapshots of 12-th run (ex12).

(d) Snapshots of 13-th run (ex13).
Fig. 6. Results of learning the handstanding task.

Fig. 7(b), 7(c), and 7(d). As shown in Fig. 7(a), there are
some kinds of local maxima. In each run, the robot acquired a
jumping behavior. However, in the 14-th episode (Fig. 7(d)),
the robot jumps once in the episode, while in the 4-th and 13-
th episodes (Fig. 7(b), 7(c)), the robot jumps multiple times.

D. Forward Rolling Task

The objective of the forward rolling task is to roll the body
forward as far as possible. According to the objective, the
reward is designed as follows:

r(t) = rrlf(t)rsc(t) (12)
rrlf(t) = 0.0125ωy (13)

rsc(t) = 4× 10−9‖ũ(t)‖ (14)

where rrlf(t) is the reward for forward rolling, and rsc(t)
is the step cost. Each episode begins with the initial state
where the robot is standing up and stationary, and ends if
t > 10[s].

Fig. 8(a) shows the resulting learning curves, where three
curves are highlighted whose snapshots are shown in
Fig. 8(b), 8(c), and 8(d). As shown in Fig. 8(a), there are
some kinds of local maxima. In each run, the robot rolls
its body forward. The difference is the amount of roll. The
robot rolls once in the 4-th episode (Fig. 8(b)), twice in the
8-th episode (Fig. 8(c)), and five times in the 10-th episode
(Fig. 8(d)).

E. Backward Rolling Task

The objective of the backward rolling task is to roll the
body backward as far as possible. Thus, this task is almost

(a) Resulting learning curves of the jumping task. Each curve shows the
return per episode in a run. Three curves are highlighted whose snapshots
are shown below.

(b) Snapshots of 4-th run (ex4).

(c) Snapshots of 13-th run (ex13).

(d) Snapshots of 14-th run (ex14).
Fig. 7. Results of learning the jumping task.

the same as the forward rolling task; the difference is the
robot’s hardware configuration. For example, the knees of
the robot are constrained similar to those of humans. The
task design is almost the same as that of the forward rolling
task; only the difference is the sign of rrlf(t) is negative in
order to evaluate the backward roll.

Fig. 9(a) shows the resulting learning curves, where two
curves are highlighted whose snapshots are shown in
Fig. 9(b) and 9(c). As shown in Fig. 9(a), there are some
kinds of local maxima. In each run, the robot rolls its body
backward. The difference is the amount of roll. The robot
rolls once in the 4-th episode (Fig. 9(b)), but more than three
times in the 12-th episode (Fig. 9(c)).

F. Turning Task

The objective of the turning task is to turn around the
z-axis as fast as possible. According to the objective, the
reward is designed as follows:

r(t) = rtn(t)− rsc(t)− rfd(t) (15)
rtn(t) = 0.0125ωz(t) (16)

rsc(t) = 0.0025‖(ċ0x, ċ0y)‖+ 4× 10−9‖ũ(t)‖ (17)

where rtn(t) is the reward for turning, rsc(t) is the step cost
for the x− y global movement and the torque usage, rfd(t)
is the penalty for falling down. rfd(t) takes 4 if the body
link touches the ground, takes 0.1 if the head link touches
the ground; otherwise it takes 0. rfd(t) has a non-zero value
once in each action. Each episode begins with the initial

(a) Resulting learning curves of the forward rolling task. Each curve shows
the return per episode in a run. Three curves are highlighted whose snapshots
are shown below.

(b) Snapshots of 4-th run (ex4).

(c) Snapshots of 8-th run (ex8).

(d) Snapshots of 10-th run (ex10).
Fig. 8. Results of learning the forward rolling task.

state where the robot lies down and stationary, and ends if
t > 20[s] or the sum of reward is less than −40.

Fig. 10(a) shows the resulting learning curves, where
two curves are highlighted whose snapshots are shown in
Fig. 10(b) and 10(c). As shown in Fig. 10(a), there are some
kinds of local maxima. In each run, the robot turns. However,
in the 4-th episode (Fig. 10(b)), the robot rotates around
the left front of the waist link; while in the 9-th episode
(Fig. 10(c)), the robot rotates around the right shoulder. The
latter one is inefficient. This difference causes the variation
of the turning speed. The turning speed of the 4-th episode
(Fig. 10(b)) is faster than that of the 9-th episode (Fig. 10(c)).

V. DISCUSSION

Through the experiments, we found that there are some
local maxima in each task. Such local maxima are considered
to be obtained not only in our case, but also in the other
cases. A local maximum may be a behavior that its designer
expected, while the other maxima may not. This problem is
considered to be caused by the difficulties of both designing a
reward function and applying an RL method for a large DoF
domain. At least, in order to overcome the former difficulty,
we need to make an interactive learning system into which
the user can feed back the difference from the expectation;

(a) Resulting learning curves of the backward rolling task. Each curve shows
the return per episode in a run. Two curves are highlighted whose snapshots
are shown below.

(b) Snapshots of 4-th run (ex4).

(c) Snapshots of 12-th run (ex12).
Fig. 9. Results of learning the backward rolling task.

(a) Resulting learning curves of the turning task. Each curve shows the return
per episode in a run. Two curves are highlighted whose snapshots are shown
below.

(b) Snapshots of 4-th run (ex4).

(c) Snapshots of 9-th run (ex9).
Fig. 10. Results of learning the turning task.

such an approach is found in [14].
Another problem is that in the experiments of this paper,

we specified the state and the action space of the RL
agent for each task, which may be difficult for non-expert
users. However, using the learning strategy fusion method
[13], the state and the action space suitable to the task are
automatically chosen, which may make the behavior design
easier.

VI. CONCLUSION

In this paper, in order to unify the “robot language”
approach and the reinforcement learning (RL) framework,
we proposed a robot task description mechanism; a task
is described with several event-driven functions where the
reward and the end-of-episode condition are defined. Using
this task description, we can design tasks much more simply
than the traditional robot languages, since RL methods
release us from specifying the robot/environment models and
the task procedure. This task description mechanism was
implemented by extending the script interface of the C++
RL library SkyAI. Using the task description mechanism,
we designed six kinds of dynamic behaviors for a humanoid
robot; a crawling, a handstanding, a jumping, a forward
rolling, a backward rolling, and a turning task. By an RL
method, the behaviors of these tasks were obtained from their
task descriptions. We also discussed the current problems of
our approach, which are planned to be solved by our future
work.

REFERENCES

[1] A. Okano, H. Matsubara, and H. Inoue, “Design and implementation
of a task-oriented robot language,” Advanced Robotics, vol. 3, no. 3,
pp. 177–191, 1988.

[2] H. Kimura, T. Yamashita, and S. Kobayashi, “Reinforcement learning
of walking behavior for a four-legged robot,” in Proceedings of the
40th IEEE Conference on Decision and Control, 2001.

[3] J. Zhang and B. Rössler, “Self-valuing learning and generalization with
application in visually guided grasping of complex objects,” Robotics
and Autonomous Systems, vol. 47, no. 2-3, pp. 117–127, 2004.

[4] J. Kober, A. Wilhelm, E. Oztop, and J. Peters, “Reinforcement
learning to adjust parametrized motor primitives to new situations,”
Autonomous Robots, vol. 33, pp. 361–379, 2012, 10.1007/s10514-012-
9290-3.

[5] E. Theodorou, J. Buchli, and S. Schaal, “Reinforcement learning of
motor skills in high dimensions: A path integral approach,” in the IEEE
International Conference on Robotics and Automation (ICRA’10), may
2010, pp. 2397–2403.

[6] J. Kober and J. Peters, “Learning motor primitives for robotics,”
in the IEEE International Conference on Robotics and Automation
(ICRA’09), 2009, pp. 2509–2515.

[7] A. Yamaguchi and T. Ogasawara, “Skyai: Highly modular-
ized reinforcement learning library —concepts, requirements, and
implementation—,” in the 10th IEEE-RAS International Conference
on Humanoid Robots (Humanoids’10), Nashville, TN, US, 2010, pp.
118–123.

[8] T. Schaul, J. Bayer, D. Wierstra, Y. Sun, M. Felder, F. Sehnke,
T. Rückstieß, and J. Schmidhuber, “Pybrain,” Journal of Machine
Learning Research, vol. 11, pp. 743–746, 2010.

[9] B. Tanner and A. White, “Rl-glue: Language-independent software
for reinforcement-learning experiments,” Journal of Machine Learning
Research, vol. 10, pp. 2133–2136, 2009.

[10] J. Peng and R. J. Williams, “Incremental multi-step Q-learning,” in
International Conference on Machine Learning, 1994, pp. 226–232.

[11] A. Yamaguchi, J. Takamatsu, and T. Ogasawara, “Constructing action
set from basis functions for reinforcement learning of robot control,”
in the IEEE International Conference on Robotics and Automation
(ICRA’09), Kobe, Japan, 2009, pp. 2525–2532.

[12] M. Sato and S. Ishii, “On-line EM algorithm for the normalized
Gaussian network,” Neural Computation, vol. 12, no. 2, pp. 407–432,
2000.

[13] A. Yamaguchi, J. Takamatsu, and T. Ogasawara, “Learning strategy fu-
sion to acquire dynamic motion,” in the 11th IEEE-RAS International
Conference on Humanoid Robots (Humanoids’11), Bled, Slovenia,
2011, pp. 247–254.

[14] A. Tenorio-Gonzalez, E. Morales, and L. Villaseñor Pineda, “Dynamic
reward shaping: Training a robot by voice,” in Advances in Artificial
Intelligence – IBERAMIA 2010, ser. Lecture Notes in Computer
Science, 2010, vol. 6433, pp. 483–492.

	Introduction
	Task Description Mechanism
	Task Examples
	General Task Description
	Realization

	Task Description using SkyAI
	Overview of SkyAI
	Problem of SkyAI's Task Description
	Extension for Task Description
	Universal Task Module
	Extension of Script Interface

	Applying to the Other Robot Systems

	Demonstrations
	Crawling Task
	Handstanding Task
	Jumping Task
	Forward Rolling Task
	Backward Rolling Task
	Turning Task

	Discussion
	Conclusion
	References

