
Learning Strategy Fusion to Acquire Dynamic Motion

Akihiko Yamaguchi (JSPS Research Fellow), Jun Takamatsu, and Tsukasa Ogasawara
Graduate School of Information Science

Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara 630-0192, JAPAN
Email: {akihiko-y, j-taka, ogasawar}@is.naist.jp

Abstract—This paper proposes a method to fuse learning
strategies (LSs) in a reinforcement learning framework. In
this method, some LSs are integrated for learning a single
task of a single robot. The LSs consists of (1) LS-scratch:
learning a policy from scratch, (2) LS-accelerating: learning a
policy from a previously learned policy by accelerating motion-
speed parameters, and (3) LS-freeing: learning a policy from
a previously learned policy by increasing the DoF (degree of
freedom). The proposed LS fusion method enables (A) in the
early stage of learning, LS fusion can select a suitable DoF
configuration from a predefined set of DoF configurations, and
(B) after a behavior module that learns from scratch converges,
the LSs are applied to improve the policy. As a result, a robot can
learn a complex task by starting with a simplified configuration,
and then transferring the learned behaviors while increasing the
difficulty. We introduce WF-DCOB proposed by Yamaguchi et
al. for the LSs. We verify the proposed LS fusion method with a
crawling task of a humanoid robot. The simulation experiments
demonstrate the advantage of the proposed method compared to
learning with a single learning module.

I. INTRODUCTION

Designing a behavior by only its objective is essential
for future robots, since this ability enables the end-users to
teach their wish to the robots easily. Reinforcement Learning
(RL) is such a technology. There are many RL applications
to robotics research [1]∼[7]. However, RL methods require
a lot of learning cost in large domains, such as a motion
learning task of a humanoid robot. Many researchers are
tackling to this issue, and some effective learning strategies
(LSs) are proposed: dimension reduction [3], model utilization
[4], hierarchical structure [5], imitation of the others [6], and
transferring (reusing) previously learned knowledge [7].

Though these LSs are defined and used individually, we
think that humans probably use multiple LSs for a single task
multiple times. Imagine learning a tennis swing. We first swing
a tennis racket slowly. After a good swing form is acquired,
we speed up the swing, then continue to learn. In an RL sense,
an accelerating LS is used in this learning; this LS transfers
the policy of the slow swing to the policy of the faster swing.
Note that we may use this LS multiple times. Other example
is found in an infant’s learning walking model [8], where the
infant starts from a lower DoF (degree of freedom), then learns
in a higher DoF. In an RL sense, a freeing LS is used which
transfers the policy of the lower DoF to the policy of the higher
DoF. In addition, we can naturally infer that the accelerating
LS may be also used in learning walking. Though these are
only a few examples, we consider that using multiple LSs for
a task multiple times is a key technique to learn a policy in a

Fig. 1. Example learning process of the learning strategy (LS) fusion method.
Multiple LSs are applied to a single task multiple times. LS-scr, LS-accel,
and LS-free denote LS-scratch, LS-accelerating, and LS-freeing respectively.
UCB means the UCB-Boltzmann selection method which chooses a behavior
module (B1, B2,...) that decides the actual movement of the robot. Behavior
modules that have potentially high performance are used and trained prefer-
entially.

large domain.
In this paper, we propose the learning strategy fusion

method, which automatically applies multiple LSs to a task
multiple times during its learning process. In addition, we
propose some LSs that are compatible with the LS fusion
method.

To accomplish the LS fusion method, we develop a system
that maintains multiple policies rather than a single policy,
in order to test several configurations of an LS and return
to a previous policy if a transfer LS does not improve the
performance. In our system, each policy is maintained by
a behavior module that consists of an RL method (an RL
algorithm and a function approximator) and its parameters. In
this system, an LS is defined as a method that generates a
behavior module.

Now the problems that should be solved to accomplish LS
fusion are: (1) how to select a behavior module that actually
controls the robot and updates its policy from the samples,
(2) how to design each LS, and (3) when the LSs are applied.
In the following three paragraphs, we describe the outline of
the solutions.

We employ the upper-confidence-bound (UCB) value of the
return to evaluate each behavior module. Here, the return is
the amount of reward in an episode, and the UCB value is
the sum of the return and its standard deviation. The return

indicates the performance of a behavior module, thus the UCB
value indicates the performance including an expectation of
the improvement. In addition, rather than selecting a behavior
module that has the maximum UCB value, we utilize the
Boltzmann selection method to introduce randomness. We
refer to this method as the UCB-Boltzmann selection method.

In this paper, we define three LSs:
LS-scratch generates a behavior module that learns a task

from scratch.
LS-accelerating generates a behavior module by accelerating

the motion of a source behavior module.
LS-freeing generates a behavior module by increasing the DoF

of a source behavior module.
As an RL method of LS-scratch, we utilize WF-DCOB pro-
posed by Yamaguchi et al. [1], which learns a policy to select
a continuous action and is efficient in a learning-from-scratch
case. In addition, the parameters of the function approximator
in WF-DCOB encode the speed of motion and the target joint
angles, which enables us to define LS-accelerating and LS-
freeing easily.

If the system can apply the LSs in every stage of the
learning, the number of behavior modules becomes large.
Therefore, we introduce two principles in applying the LSs.
One is preventing to apply an LS of the same configuration.
The other is that only when a behavior module is trained
enough, a transfer LS (LS-accelerating or LS-freeing) is ap-
plied to it.

Fig. 1 illustrates an example learning process where the LS
fusion method is applied to a crawling task of a humanoid
robot. First, a behavior module is generated by LS-scratch
(B1). After B1 is trained enough, B2 is generated by applying
LS-accelerating to B1. Similarly, B3 is generated by applying
LS-freeing to B2. A behavior module is selected by the
UCB-Boltzmann selection method. If the performance of a
transferred module is not improved, UCB-Boltzmann selects
a previous behavior module.

We apply the proposed method to a crawling task of a small
size humanoid robot. The simulation experiments demonstrate
the advantage of LS fusion compared to learning with a single
behavior module.

In Section II, we discuss the related works. In Section III,
we briefly introduce RL. We propose the LS fusion method in
Section IV, and define the LSs in Section V using WF-DCOB.
In Section VI, the simulation experiments are presented. Fi-
nally, we conclude in Section VII.

II. RELATED WORKS

LS fusion is considered to be a learning architecture that
consists of multiple RL modules for a single robot and a single
task, and allows behavior transfer during a single learning
process. The most remarkable feature compared to the other
works is that the LSs transfer not only policy parameters, but
also physical limitation of the policy. LS-freeing changes the
DoF. LS-accelerating changes not only the speed parameters,
but the constraints of the speed parameters. Namely, these

LSs modify the task domain (the state-action space and the
dynamics), which has a probability to increase performance.

Uchibe et al. [9] proposed the Cooperative-Competitive-
Concurrent Learning with Importance Sampling (CLIS) archi-
tecture, where multiple RL modules sharing the same sensory-
motor system learn for the same task simultaneously by using
importance sampling. The similarity to LS fusion is employing
multiple modules for a single task. CLIS architecture is
considered to be transferring samples obtained from a module
to the other modules. Thus, the architecture allows concurrent
learning. On the other hand, LS fusion transfers a policy
in a behavior module to a new module where some motion
parameters, such as DoF and speed parameters, are changed.
Thus, the new behavior module has a probability to increase
the performance of the old module.

Fernández et al. [10] proposed a method to probabilistically
reuse the policies learned in the other tasks. Later, Fernández
et al. [11] extended their Policy Reuse so that each policy is
transferred when reusing. LS fusion is considered to be reusing
policies, so these two approaches are similar. The difference
is that the methods in [10], [11] transfer a policy between
several tasks, while LS fusion transfers a policy in a single
task. In addition, LS fusion modifies the motion parameters
including the physical limitation, while the method in [10]
does not change the state-action space and the dynamics.
These differences also appear in the other transfer learning
methods (e.g. [7], [12]).

III. REINFORCEMENT LEARNING

The purpose of RL is for a learning system (agent) whose
input is a state xn ∈ X and a reward rn ∈ R, and
whose output is an action un ∈ U , to acquire the policy
π(xn) : X → U that maximizes the expected discounted return
E

[∑∞
k=1 γk−1rn+k

]
where n ∈ N = {0, 1, . . . } denotes

the time step and γ ∈ [0, 1) denotes a discount factor. In
value-function-based RL algorithms, an action value function
Q(x, u) : X × U → R is learned to represent the expected
discounted return by taking an action u from a state x. Then,
the optimal action rule is obtained from the greedy policy
π(x) = arg maxu Q(x, u). We use the Peng’s Q(λ)-learning
algorithm [13], which is an on-line RL method. That is to say,
the update procedure is applied after each action.

IV. LEARNING STRATEGY FUSION

LS fusion consists of two elements: the LSs and the LS
fusion algorithm. Each LS generates new behavior modules
according to the strategy. The LS fusion algorithm consists of
three parts; (1) generating the new behavior modules by using
the LSs, (2) selecting a behavior module to be executed, and
(3) executing and training the selected behavior module. The
overview of each part is as follows:
(1) Behavior modules of different DoF configurations are

generated by LS-scratch. If there is a behavior module
trained enough, the transfer LSs are applied to the behavior
module. Note that the generation of the same setup (e.g.

LS-scratch of the same DoF) is forbidden in order to
prevent that too much behavior modules are generated.

(2) A behavior module is selected from both the existing
behavior modules and the new ones generated by the LSs.
A behavior module desired to be selected is one that is a
good performance or has a potential of the performance
improvement. Thus, the Boltzmann selection method with
the UCB value is introduced.

(3) The selected behavior module is used to decide the actual
movement of the robot and update its policy from the
samples obtained through the execution.

The UCB-Boltzmann selection method uses both the mean of
recent return data RB and its deviation σB , where B denotes a
behavior module. σB can estimate the potential improvement
of the performance. The deviation σB is also used to judge if
a behavior module is trained enough.

A. Algorithm

We assume that several pairs of a control command space
and a state space {(Ũ ,X)} are predefined; they have different
DoF configurations. Here, defining Ũ and X means giving
conversions between (Ũ ,X) and the whole body’s command
and state spaces (Ũw,Xw) (i.e. the joints are not constrained).
Specifically, we use linear conversions with constant matrices
CŨ and CX such that ũw = CŨ ũ, x = CXxw where ũ ∈ Ũ ,
ũw ∈ Ũw, x ∈ X , and xw ∈ Xw.

Each learning strategy LS is defined as a function
GEN(LS , Ũ ,X) that returns a set of new behavior modules.
The LS fusion algorithm is designed for an episodic task,
given as Algorithm 11. Here, NLSD denotes an interval of
executing the LSs (LSD means LS Decision). NLSD > 1 is
needed to compute the valid reward statistics (we choose 10 in
the experiments). The LS fusion algorithm selects a behavior
module from both the existing B and new behavior modules
generated by the LSs. Note that only the selected new behavior
module is added into B.

Thus, the key element of LS fusion is each GEN and
the UCB-Boltzmann selection method. Note that LS fusion
works with any LS for that GEN is defined. The rest of this
section describes the reward statistics and the UCB-Boltzmann
selection method. In the next section, we introduce the LSs
used in this paper.

B. Reward Statistics

We evaluate the performance of a behavior module by
R ,

P

t rt

T , where {rt|t = 1, 2, . . . } denotes the observed
reward sequence in an episode, and T denotes the amount
of time in the episode. The definition of R depends on the
task. In general, a sum of reward (return) is expected to be
an evaluation of the performance, but in our crawling task,
dividing the return by the amount of time is suitable to select
a better behavior module, especially in the early stage of
learning.

1In implementing this algorithm, the size of B is limited to 20 to prevent
the large memory usage. If the size exceeds the limit, a behavior module that
has the minimum UCB value except for Bnext is removed from B.

Algorithm 1: Learning strategy fusion

1: B ← {} /∗ a set of behavior modules ∗/
2: for Neps = 1, 2, . . . do /∗ Neps: episode number ∗/
3: if Neps mod NLSD = 0 then
4: /∗ select a behavior module: ∗/
5: Bnew ← {}
6: for each (Ũ ,X) do
7: for each LS do
8: Bnew ← Bnew ∪ GEN(LS , Ũ ,X)
9: select Bnext from B∪Bnew by UCB-Boltzmann selection

10: if Bnext ∈ Bnew then B′ ← B∪{Bnext} else B′ ← B
11: perform the episode with Bnext where Bnext is updated by

Q(λ)-learning
12: update the reward statistics RBnext , R

2
Bnext , σmaxBnext

Since each behavior module is updated to obtain better
policy, its performance changes with episodes. Thus, we
compute the mean and the standard deviation of recent R data
by forgetting the old data, and use them to select a behavior
module. Let RNeps the observation of R at an Neps-th episode.
The reward statistics RB , R2

B are updated by

RB ← αRRNeps + (1− αR)RB , (1)

R2
B ← αRR2

Neps
+ (1− αR)R2

B , (2)

where αR is a learning rate. The standard deviation of R can
be obtained by σB = (R2

B −R
2

B)1/2. In addition, at the end
of each episode, σmaxB is updated for some LSs that stores
the maximum σB for each B.

The reward statistics RB , R2
B are initialized by zero if

B is generated by LS-scratch. If B is generated by LS-
accelerating or LS-freeing, the statistics are initialized by the
source behavior module’s values.

C. UCB-Boltzmann Selection

The UCB value of a behavior module B is defined by

RUCBB , RB + fUCBσB , (3)

where fUCB is a real constant value that decides the weight of
expected improvement (typically 1 or 2).

According to Boltzmann selection, the probability to select
B is defined as

π(B) ∝ exp(
1

τlsd
RUCBB), (4)

where τlsd is a temperature parameter to adjust the random-
ness. We decrease τlsd with τlsd = τlsd0 exp(−δτlsdNeps).

V. LEARNING STRATEGIES USING WF-DCOB
This section defines each LS, which generates behavior

modules. The defined LSs are LS-scratch, LS-accelerating, and
LS-freeing. As an RL method of LS-scratch, we utilize WF-
DCOB [1], which learns a policy to select a continuous action
and is efficient in a learning-from-scratch case. In addition, the
parameters of the function approximator in WF-DCOB encode
the speed of motion and the target joint angles, which enables
us to define LS-accelerating and LS-freeing easily.

A. WF-DCOB

WF-DCOB is an extension of the discrete action set DCOB
[2]. DCOB is designed to improve RL methods that are applied
for motion learning tasks of multi-legged robots especially in a
learning-from-scratch case. DCOB is constructed from a set of
basis functions (BFs) given to approximate a value function.
Each action in DCOB is designed to be a trajectory that is
Directed to the Center Of a target BF (which is the origin of
the name).

WF-DCOB extends DCOB to search continuous actions
around each discrete action of DCOB. In WF-DCOB, wire-
fitting [14] is used for function approximation (thus, it named
WF-). WF-DCOB aims to acquire higher performance than
DCOB with keeping the learning stability and the learning
speed in learning-from-scratch cases. The key idea of WF-
DCOB is restricting the exploration around the actions in
DCOB to make the learning process stable and keep the
learning speed. WF-DCOB has the parameters that encode
a speed of motion and target joint angles. We can define
LS-accelerating and LS-freeing so that they change these
parameters. Therefore, WF-DCOB is suitable not only for LS-
scratch, but for the transfer LSs.

In brief, WF-DCOB learns an action value function Q(x, u),
where x ∈ X is a continuous state and u ∈ U is a continuous
action. Note that x is a state of the robot, but u is not a com-
mand of the robot. Instead, WF-DCOB has an action converter
that changes an action u = (g, qtrg) into a command sequence
for the robot, where g (> 0) is called an interval factor which
decides a speed of motion2, and qtrg is a vector of target
joint angles. Q(x, u) is approximated by wire-fitting whose
parameter vector is θ> = (θ>1 , U>

1 , θ>2 , U>
2 , . . .). Here, θi is

a scalar parameter that encodes an action value, Ui is a vector
defined as Ui = (gi, q

trg
i) that encodes an action. In addition,

a set of constant parameters IR = {(gs
i , g

e
i)|i = 1, 2, . . . } is

defined to constrain gi. See Appendix for the details.

B. Learning Strategies

Next, we define the LSs, namely, defines a function
GEN(LS , Ũ ,X) for each learning strategy LS . Every behavior
module B has information, LS (B): a learning strategy with
which the behavior module is generated, Ũ (B): a command
space and X (B): a state space where the behavior module
learns, and K(B): a set of BFs.

1) LS-Scratch: The function GEN(LS-scr, Ũ ,X) generates
a behavior module in the learning-from-scratch manner. But,
GEN generates no behavior module if there is a behavior
module of the same setup; that is, B is forbidden to include
a behavior module B such that LS (B) = LS-scr, Ũ (B) = Ũ ,
and X (B) = X . The reason of preventing a generation of the
same setup is that the probability that the new behavior module
obtains better performance than the old one is not high. A new
behavior module Bnew uses WF-DCOB with Q(λ)-learning,
where a default (predefined) set of BFs is employed. If a
default set of BFs is not predefined for X , a new behavior

2Actually, g indicates the slowness; a smaller g generates a faster motion.

module is not generated3. The parameters of wire-fitting are
initialized as described in Appendix.

2) LS-Accelerating: LS-accelerating generates behavior
modules from source behavior modules by accelerating the
speed parameters of the policy, where a new behavior module
and its source behavior module have the same command and
the state space. Also, the generation with the same setup
is prevented. The acceleration is performed by multiplying
the interval factor of WF-DCOB by a real constant value
faccel < 1.

Specifically, in the function GEN(LS-accel, Ũ ,X), for every
Bsrc such that Ũ (Bsrc) = Ũ and X (Bsrc) = X , a new behavior
module Bnew is generated if the conditions are satisfied:
(1) B does not include a behavior module B such that

LS (B) = LS-accel and Src(B) = Bsrc,
(2) σBsrc/σmaxBsrc < σth,
where Src(B) denotes the source behavior module of B, σB

denotes a deviation of B’s reward, and σmaxB denotes its
maximum. Thus, the condition (2) checks if Bsrc almost
converged, namely, is trained enough. σth is a threshold.

Bnew uses the same BFs as Bsrc, namely K(Bnew) = K(Bsrc).
The parameters of wire-fitting of Bnew are copied from Bsrc

except that {U (Bnew)
i } is multiplied by faccel. Specifically, for

each i ∈ W (Bsrc),

θ(Bnew)
i = θ(Bsrc)

i , (5)

U (Bnew)
i = (g(Bnew)

i , qtrg(Bnew)
i) = (faccelg

(Bsrc)
i , qtrg(Bsrc)

i). (6)

Additionally, the set of constraint range IR = {(gs
i , g

e
i)|i =

1, 2, . . . } is also modified: gs(Bnew)
i = faccelg

s(Bsrc)
i , ge(Bnew)

i =
faccelg

e(Bsrc)
i . Thus, LS-accelerating transfers not only the

policy parameters, but also the limitation of the policy.
3) LS-Freeing: LS-freeing generates behavior modules

from source behavior modules by freeing the DoF of each
source behavior module to a larger DoF based on a predefined
freeing direction F . Each freeing direction F includes the
information, Ũ (F)

src , X (F)
src , Ũ (F)

dest, and X (F)
dest which denote the

spaces of a source behavior module and the spaces of a
destination behavior module.

In the function GEN(LS-free, Ũ ,X), for every pair of
(F, Bsrc) such that Ũ (F)

dest = Ũ , X (F)
dest = X , Ũ (Bsrc) = Ũ (F)

src , and
X (Bsrc) = X (F)

src , a new behavior module Bnew is generated if
the conditions are satisfied:
(1) B does not include a behavior module B such that

LS (B) = LS-free, Ũ (B) = Ũ , X (B) = X , and Src(B) =
Bsrc,

(2) The same as the condition (2) of LS-accelerating.
The condition (1) is to prevent to generate with the same setup.

Bnew is initialized so that its action value function is almost
the same as that of Bsrc. To do this, first, the freeing matrices
DŨ and DX are calculated so that the conversions ũdest =
DŨ ũsrc, xdest = DXxsrc are performed where ũdest ∈ Ũ (F)

dest,
ũsrc ∈ Ũ (F)

src , xdest ∈ X (F)
dest, and xsrc ∈ X (F)

src . We define these
matrices as

DŨ = C]

Ũ (F)
dest

CŨ (F)
src

, DX = CX (F)
dest

C]

X (F)
src

, (7)

3In the following experiments, X16 is the case.

where] denotes a pseudo-inverse. The parameters of the
Bnew’s BFs are calculated as

µ(Bnew)
k = DXµ(Bsrc)

k , Σ (Bnew)
k = DXΣ (Bsrc)

k D>
X , (8)

for each k ∈ K(Bsrc). The parameters of wire-fitting are
initialized as

θ(Bnew)
i = θ(Bsrc)

i , (9)

U (Bnew)
i = (g(Bnew)

i , qtrg(Bnew)
i) = (g(Bsrc)

i , DŨqtrg(Bsrc)
i), (10)

for each i ∈ W (Bsrc). In this case, IR is not changed.

VI. EXPERIMENTS

In this section, we apply LS fusion to a crawling task of a
humanoid robot on simulation. Fig. 2 shows the simulation
model. Its height is 0.328m. It weighs 1.20kg. Each joint
torque is limited to 1.03Nm, and a PD-controller is embedded
on it. The following experiments are performed on a dynam-
ics simulator, ODE4, with a time step 0.2ms. LS fusion is
implemented with the RL library, SkyAI5.

A. Space Configurations

We use six sets of DoF configurations (Fig. 3): 3-DoF
(Ũ3,X3), 4-DoF (Ũ4,X4), 5-DoF (Ũ5,X5), 6-DoF (Ũ6,X6),
7-DoF (Ũ7,X7), and 16-DoF (Ũ16,X16). In 3, 5, 6, and 7-
DoF configurations, some joints are coupled to be bilaterally
symmetric. In the 3-DoF, each set of joint pairs {q1, q3, q4, q6},
{q8, q13}, {q9, q10, q14, q15} is coupled respectively. In the 4-
DoF, each set of joint pairs {q1, q3}, {q4, q6}, {q8, q9, q10},
{q13, q14, q15} is coupled respectively, which means one DoF
for each leg. In the 5-DoF, each set of joint pairs {q1, q4},
{q3, q6}, {q8, q13}, {q9, q14}, {q10, q15} is coupled respec-
tively. In the 6-DoF, a coupled joint pair {q7, q12} is added to
the 5-DoF. In the 7-DoF, a coupled joint pair {q2, q5} is added
to the 6-DoF. In the 16-DoF, only the head link is fixed, while
the other joints move independently.

In ND-DoF configuration, its command input space is a ND-
dimensional vector space that represents target joint angles. Its
state space is

x = (c0z, qw, qx, qy, qz,q>
ND

,

ċ0x, ċ0y, ċ0z, ωx, ωy, ωz, q̇>
ND

)> (11)

where (c0x, c0y, c0z) denotes the position of the center-of-mass
of the body link, (qw, qx, qy, qz) denotes the rotation of the
body link in quaternion, (ωx, ωy, ωz) denotes the rotational
velocity of the body link, and qND denotes the joint angle
vector of the ND-DoF. The reason for the absence of c0x and
c0y from the state x is that a policy for the crawling task does
not have to depend on the global location of the robot.

The default BFs are allocated as follows. For the state space
X3, we allocate BFs on a 5 × 5 × 5 grid over the q3 space.
For the state space X4, we allocate BFs on a 4×4×4×4 grid
over the q4 space. For the state space X5, we allocate 202
BFs by a dynamics-based allocation method used in [2]. For

4Open Dynamics Engine: www.ode.org
5SkyAI: skyai.org

Fig. 2. Simulation model of a humanoid robot.

Fig. 3. DoF configurations and possible freeing directions. Each encircled
number shows an index of dimension; joints with the same number are
coupled. Each arrow shows that freeing is possible in this direction.

the state space X6 and X7, we allocate 300 and 600 BFs over
the (qy,q6) and the (qy,q7) space respectively by a spring-
damper allocation method6. For the state space X16, we do
not prepare a default set of BFs since the DoF is too large.

The possible freeing directions between these DoF configu-
rations are defined as shown in Fig. 3. Each arrow shows that
freeing is possible in this direction.

B. Task Setup

The objective of the crawling task is to move forward as fast
as possible. According to the objective, the reward is designed
as follows:

r(t) = rmv(t)− rrt(t)− rsc(t)− rfd(t) (12)

where rmv(t) = 50(ċ0x(t)ez1(t) + ċ0y(t)ez2(t)), rrt(t) =
5|ωz(t)|, rsc(t) = 2 × 10−5‖ũ(t)‖; rmv(t) is a reward for
forward movement, (ez1, ez2, ez3)> is a z-component of the
rotation matrix of the body link, rrt is a penalty for rotation,
rsc(t) is a step cost, rfd(t) is a penalty for falling down.

6First, we allocate BFs randomly. The covariance matrix of each BF is
constrained to Σ = σ21 where 1 is an unit matrix. Then, they are re-arranged
so that the centers of the BFs spread as widely as possible and σ becomes as
large as possible without overlapping.

rfd(t) takes 4 if the body or the head link touches the ground,
otherwise it takes 0. The penalty for falling down is given once
in each action. Each episode begins with the initial state where
the robot lies down and stationary, and ends if

∫ t

0
r(t′)dt′

6 −40 or t > 20[s].

C. Learning Method Configurations

We choose the parameters of LS fusion (denoted as LSF
in the experiments) as follows: fUCB = 2, αR = 0.05,
NLSD = 10, τlsd0 = 20, δτlsd = 0.004, σth = 0.2,
and faccel = 0.95. LS-scratch generates a behavior mod-
ule whose parameters are set as τ0 = 2, δτ = 0.02 for
Boltzmann selection of the decreasing temperature parameter
τ = τ0 exp(−δτNepsB) where NepsB denotes a number of
episodes performed by the behavior module B. The parameters
of WF-DCOB are as follows: Cp(x) = qND , Cd(x) = q̇ND

for x ∈ XND , and IR = {(0.05, 0.1), (0.1, 0.2), (0.2, 0.3)} for
every configurations. LS-accelerating and LS-freeing generate
a behavior module of the parameters τ0 = 0.1, δτ = 0.02
since the behavior module starts from an almost converged
policy. Every behavior module uses Peng’s Q(λ)-learning with
γ = 0.9, λ = 0.9, and a decreasing step size parameter
α = 0.3 exp(−0.002NepsB).

As a comparison, some configurations of WF-DCOB are
also applied. Note that WF-DCOB for the crawling task is
superior to conventional methods though its performance is
almost the same as that of DCOB [1], [2]. We employ five
conditions that are denoted as WF-DCOB-{3,4,5,6,7}. Each
number indicates a DoF. All of them use Peng’s Q(λ)-learning
with the same parameters as a behavior module of LS-scratch.

D. Results

We execute 10 runs for each configuration. Fig. 4 shows
the learning curves of the first five runs of LSF (ex0,...,ex4).
In this figure, each circle shows the return acquired by a
behavior module generated by LS-scratch (we refer to it as
a scratch behavior module). Namely, the other points on the
solid curve are obtained by behavior modules generated by
LS-accelerating and LS-freeing. In four out of five runs, the
learning curves converge to higher values than that of the
scratch behavior modules. This result means that the trans-
fer learning by LS-accelerating and LS-freeing successfully
improves the performance of the motion. Meanwhile, in ex2,
the performance is not improved by the transfer learning. A
possible reason is that the scratch behavior module acquires a
high performance motion in the early stage of the learning, and
there is no room for improvement. Anyway, the remarkable
point is that the LS fusion algorithm selects a suitable sequence
of the LSs including the selection of a DoF configuration.

Let us see a detailed learning process. Fig. 5 shows a
learning curve and a behavior module transition in a run
obtained from LSF (ex0 in Fig. 4). The returns obtained by
scratch behavior modules are also plotted by circles. In the
early stage of the learning (0 . . . 500-th episode), the scratch
behavior modules dominate. One of them seems converging
to a return about 230 around 350-th episode. The converged

Fig. 4. Learning curves of five runs obtained from LSF. Each solid line
shows the return per episode, and each circle shows the return acquired by a
behavior generated by LS-scratch.

Fig. 5. Learning curve and module transition in a run obtained from LSF
(ex0 in Fig. 4). The dotted line shows the return per episode, each circle shows
the return acquired by a behavior generated by LS-scratch, and the solid line
shows the index of the selected behavior module in each episode.

TABLE I
PROFILES OF MOTIONS IN FIG. 6.

Episode Return Procedure
200 6.12 S(3)
300 231.55 S(3)
400 210.00 S(3)→F(3→16)
500 229.46 S(3)
600 248.01 S(3)→F(3→5)→A→F(5→6)→F(5→16)
700 328.49 S(3)→F(3→5)→A→F(5→16)→A→A
800 361.10 S(3)→F(3→5)→A→F(5→16)→A→A→A

1000 361.87 S(3)→F(3→5)→A→F(5→16)→A→A→A
1500 374.33 S(3)→F(3→5)→A→F(5→16)→A→A→A

module uses the 3-DoF configuration, with which a behavior
module can learn policy quickly because of the lower dimen-
sion. Then, LS-accelerating and LS-freeing are applied. The
behavior module used in the final stage of the learning is ob-
tained through the following LS sequence: S(3-DoF)→F(3→5-
DoF)→A→F(5→16-DoF)→A→A→A, where S denotes LS-
scratch, A denotes LS-accelerating, and F denotes LS-freeing.

Fig. 6. Snapshots of motions during learning (ex0 in Fig. 4). Every snapshot
is taken at 3-FPS during first 15 frames in each episode.

Fig. 7. Resulting learning curves of the crawling task. Each curve shows
the mean of the return per episode over 10 runs.

The final convergent value of the return is around 370, thus,
the performance is improved by the transfer learning. Fig. 6
shows snapshots during learning (ex0 in Fig. 4), and TABLE I
shows the profiles of motions in Fig. 6. These results show
how the performance of motion is improved. Please see also
the accompanying video.

Fig. 7 shows the resulting learning curves of the crawling
task (the mean of the return per episode over 10 runs).
Among WF-DCOBs, WF-DCOB-3 converges fastest and to
the highest value of return. A possible reason is that in addition
to the lowest dimension, the joint coupling of the 3-DoF is
suitable for the crawling task. On the other hand, LSF reaches
at a higher value than that of WF-DCOB-3. The reason is
considered to be an effect of LS fusion; though the return
value of WF-DCOB-3 is not improved after convergence,
LSF improves its policy by applying LS-accelerating and LS-
freeing.

Therefore, these results demonstrate that using LS fusion
enables (1) in the early stage of learning, an agent can
select a suitable DoF configuration, and (2) after a scratch
behavior module converges, LS-accelerating and LS-freeing
can improve the policy.

VII. CONCLUSION AND FUTURE WORK

We proposed the learning strategy (LS) fusion method
where some LSs are integrated for learning a single task by
a single robot. As the LSs, we developed LS-scratch, LS-
accelerating, and LS-freeing; they are implemented with WF-
DCOB [1]. In the LS fusion algorithm, the upper-confidence-
bound (UCB) value of the return and Boltzmann selection
method are employed to select a behavior module.

The simulation experiments of a crawling task of a small
size humanoid robot demonstrated the advantage of LS fusion
compared to learning with single learning modules. Namely,
using LS fusion enables (1) in the early stage of learning,
LS fusion can select a suitable DoF configuration, and (2)
after a behavior module learning from scratch converges, LS-
accelerating and LS-freeing can improve the policy.

Our LS fusion architecture does not share the samples
among the behavior modules. Introducing a kind of importance
sampling to share the samples like CLIS [9] may improve the
learning speed, which is one of our future tasks.

ACKNOWLEDGMENTS

Part of this work was supported by a Grant-in-Aid for
JSPS, Japan Society for the Promotion of Science, Fellows
(22·9030).

APPENDIX
WF-DCOB

We first introduce the function approximator wire-fitting
[14], then describe WF-DCOB.

A. Wire-Fitting

Wire-fitting is a function approximator over a continuous
state space X and a continuous action space U which is
compatible with value-function-based RL algorithms [14]. It
is defined as

Q(x, u) = lim
ε→0+

∑
i∈W(di + ε)−1qi(x)∑

i∈W(di + ε)−1
, (13)

di = ‖u− ui(x)‖2 + C
[
max
i′∈W

(qi′(x))− qi(x)
]
. (14)

Here, a pair of the functions qi(x) : X → R and ui(x) :
X → U (i ∈ W) is called a control wire; wire-fitting is
regarded as an interpolator of the set of control wires W .
C is a smoothing factor of the interpolation (we choose
C = 0.001 in the experiments). Obviously, qi(x) is related
to an action value, and ui(x) is related to an action. Any
function approximator is available for these functions. Re-
gardless of the kind of the function approximators, wire-
fitting has the features: maxu Q(x, u) = maxi∈W(qi(x)), and
arg maxu Q(x, u) = ui?(x) where i? = arg maxi∈W(qi(x)).
Namely, the greedy action at a state x is calculated only by

evaluating qi(x) for i ∈ W . We use a normalized Gaussian
network (NGnet) [15] for qi(x) and a real value vector for
ui(x), that is, let qi(x) = θ>i φ(x) and ui(x) = Ui, where
φ(x) is the output of the NGnet. The k-th element of φ(x) is
defined as

φk(x) =
G(x;µk,Σk)∑

k′∈K G(x;µk′ ,Σk′)
, (15)

where G(x; µ,Σ) denotes a Gaussian with mean
µ and covariance matrix Σ , and K denotes a set
of BFs. Thus, the parameter vector θ is defined by
θ> = (θ>1 , U>

1 , θ>2 , U>
2 , . . . , θ>|W|, U

>
|W|), and the gradient

∇θQ(x, u) can be calculated analytically.

B. WF-DCOB

WF-DCOB [1] explores continuous actions around each
discrete action of DCOB [2] where wire-fitting is used to
approximate a value function over continuous action. WF-
DCOB consists on two elements; an action converter and an
extended wire-fitting. Action converter converts an output of
an RL agent into a sequence of a control command of a robot.

In the following, we describe only key points. Please refer
to the original paper for the details; [1] for WF-DCOB, and
[2] for DCOB.

1) Assumptions: WF-DCOB assumes the follows:
(A) Each BF k ∈ K has a fixed center µk ∈ X .
(B) Q, Cp(x), and Cd(x) are defined. Q: a space in which a

reference trajectory is calculated (e.g. a joint angle space).
Cp(x): a function that extracts q ∈ Q from a state x ∈ X
as q = Cp(x) : X → Q. Cd(x): a function that extracts
the derivative of q ∈ Q from a state x∈X as q̇ = Cd(x).

(C) A low-level controller ũ(t) = Ctrl(x(t), qd(t + δt)) to
follow a trajectory qd(t) is given where ũ is in Ũ and δt
denotes a control time-step.

In this paper, we let Q = Ũ for simplicity. In this case, ũ(t) =
Ctrl(x(t), qd(t + δt)) = qd(t + δt).

2) Action Converter: Input of the action converter is a
continuous action defined by u = (g, qtrg) ∈ R × Q , Ucnv

where g ∈ R is called an interval factor that decides a speed
of motion, and qtrg ∈ Q is target joint angles. The action
converter outputs a control command of a robot so that the
joint angles of the robot move toward qtrg. Actually, the output
command for a single action terminates in a small time interval
with which the state moves into the nearest BF.

3) Extended Wire-Fitting: DCOB discretizes Q space by
the centers of the BFs, and the interval factor space by some
real numbers. Searching continuous actions around each action
of DCOB is accomplished through three steps: (1) prepare
wire-fitting that has the same number of the control wires
as the size of DCOB, (2) initialize the Ui by corresponding
action in DCOB, (3) apply a Q(λ)-learning to wire-fitting.
Specifically, the parameters are initialized as θi = 0, Ui =
(gi, q

trg
i) = (gs

i+ge
i

2 , Cp(µki)) for each i ∈ W .
Additionally, to relax the instability of Q(λ)-learning with

wire-fitting, each Ui is constrained to around the correspond-
ing action in DCOB. Letting Ui , (gi, q

trg
i), the parameter

constraint is defined as

if gi < gs
i then gi ← gs

i

if gi > ge
i then gi ← ge

i

if ‖qtrg
i − Cp(µki)‖ > dQn (ki) then

qtrg
i ← Cp(µki) + dQn (ki)

(qtrg
i − Cp(µki))
‖qtrg

i − Cp(µki)‖

(16)

where gs
i , g

e
i denote the constraint range of gi, ki denotes an

index of the corresponding BF, dQn (ki) denotes a distance in
Q space between the BF ki and its nearest BF. The set of the
range {(gs

i , g
e
i)|i = 1, 2, . . . } is predefined as IR. Thus, the

number of the control wires is |W| = |IR||K|. This constraint
is applied after each Q(λ)-learning update.

REFERENCES

[1] A. Yamaguchi, J. Takamatsu, and T. Ogasawara, “Constructing
continuous action space from basis functions for fast and stable
reinforcement learning,” in the 18th IEEE International Symposium on
Robot and Human Interactive Communication (RO-MAN’09), Toyama,
Japan, 2009, pp. 401–407.

[2] ——, “Constructing action set from basis functions for reinforcement
learning of robot control,” in the IEEE International Conference
on Robotics and Automation (ICRA’09), Kobe, Japan, 2009, pp.
2525–2532.

[3] J. Morimoto, S. Hyon, C. Atkeson, and G. Cheng, “Low-dimensional
feature extraction for humanoid locomotion using kernel dimension
reduction,” in the IEEE International Conference on Robotics and
Automation (ICRA’08), 2008, pp. 2711–2716.

[4] A. M. Farahmand, A. Shademan, M. Jägersand, and C. Szepesvári,
“Model-based and model-free reinforcement learning for visual servo-
ing,” in the IEEE International Conference on Robotics and Automation
(ICRA’09), Kobe, Japan, May 2009, pp. 2917–2924.

[5] Y. Takahashi and M. Asada, “Multi-layered learning systems for vision-
based behavior acquisition of a real mobile robot,” in Proceedings of
SICE Annual Conference 2003, 2003, pp. 2937–2942.

[6] J. Kober and J. Peters, “Learning motor primitives for robotics,” in the
IEEE International Conference on Robotics and Automation (ICRA’09),
2009, pp. 2509–2515.

[7] J. Zhang and B. Rössler, “Self-valuing learning and generalization with
application in visually guided grasping of complex objects,” Robotics
and Autonomous Systems, vol. 47, no. 2-3, pp. 117–127, 2004.

[8] G. Taga, R. Takaya, and Y. Konishi, “Analysis of general movements
of infants towards understanding of developmental principle for motor
control,” in the IEEE International Conference on Systems, Man, and
Cybernetics, 1999 (SMC ’99), vol. 5, 1999, pp. 678–683.

[9] E. Uchibe and K. Doya, “Competitive-cooperative-concurrent reinforce-
ment learning with importance sampling,” in the International Confer-
ence on Simulation of Adaptive Behavior: From Animals and Animats,
2004, pp. 287–296.

[10] F. Fernández and M. Veloso, “Probabilistic policy reuse in a rein-
forcement learning agent,” in AAMAS ’06: Proceedings of the fifth
international joint conference on Autonomous agents and multiagent
systems. New York, NY, USA: ACM Press, 2006, pp. 720–727.

[11] F. Fernández, J. Garcı́a, and M. Veloso, “Probabilistic Policy Reuse
for inter-task transfer learning,” Robotics and Autonomous Systems,
vol. 58, no. 7, pp. 866–871, 2010.

[12] M. G. Madden and T. Howley, “Transfer of experience between
reinforcement learning environments with progressive difficulty,”
Artificial Intelligence Review, vol. 21, pp. 375–398, June 2004.

[13] J. Peng and R. J. Williams, “Incremental multi-step Q-learning,” in
International Conference on Machine Learning, 1994, pp. 226–232.

[14] L. C. Baird and A. H. Klopf, “Reinforcement learning with high-
dimensional, continuous actions,” Wright Laboratory, Wright-Patterson
Air Force Base, Tech. Rep. WL-TR-93-1147, 1993.

[15] M. Sato and S. Ishii, “On-line EM algorithm for the normalized
Gaussian network,” Neural Computation, vol. 12, no. 2, pp. 407–432,
2000.

