
社団法人 電子情報通信学会
THE INSTITUTE OF ELECTRONICS,
INFORMATION AND COMMUNICATION ENGINEERS

信学技報
TECHNICAL REPORT OF IEICE.

Fusing Learning Strategies to Learn Various Tasks

with Single Configuration

Akihiko YAMAGUCHI†, Jun TAKAMATSU†, and Tsukasa OGASAWARA†

† Graduate School of Information Science, Nara Institute of Science and Technology
8916-5, Takayama, Ikoma, Nara 630-0192, JAPAN

Abstract This paper proposes a method to fuse learning strategies (LSs) in reinforcement learning framework.
Generally, we need to choose a suitable LS for each task respectively. In contrast, the proposed method automates
this selection by fusing LSs. The LSs fused in this paper includes a transfer learning, a hierarchical RL, and a model
based RL. The proposed method has a wide applicability. When the method is applied to a motion learning task,
such as a crawling task, the performance of motion may be improved compared to an agent with a single LS. The
method also can be applied to a navigation task by hierarchically combining already learned motions, such as a
crawling and a turning. This paper demonstrates a maze task of a humanoid robot where the robot learns not only
a path to goal, but also a crawling and a turning motions.
Key words Learning System, Reinforcement Learning, Modularization, Motion Learning, Humanoid Robot

1. Introduction

Designing a behavior by only its objective is essential for

future robots, since this ability enables the end-users to teach

their wish to the robots easily. Reinforcement Learning (RL)

method is such a technology. There are a lot of RL appli-

cations to robotics research [1]～[4]. However, RL methods

require a lot of learning cost in large domains, such as motion

learning of a humanoid robot.

Many researchers have tackled this issue and proposed ef-

fective methods; for instance, dimension reduction [2], hier-

archical RL [3], transfer learning [5], model utilization [6], im-

itation learning [4]. We refer to such a method as a learning

strategy (LS).

These LSs improve RL, however, their effectiveness or ap-

plicability depends on a task. For instance, a dimension

reduction by using a pattern generator may improve cyclic

motions; meanwhile, this way may restrict the capability to

learn episodic motions such as jumping. The dependency of

LSs on tasks means that the end-users should select a proper

LS for each task. This selection may be difficult for ordinary

users.

Thus, we aim to make a system in which multiple LSs

are applied to each task of a single robot multiple times,

where the ordering of the LSs is automatically decided. For

this purpose, the highly modularized learning system mainly

consists of the following four elements:

Behavior modules: deciding the behavior of a robot.

Fundamental module types: constructing behavior mod-

ules, such as a module of an RL method.

LS modules: generating behavior modules from the fun-

damental module types according to its learning strat-

Fig. 1 Overview of the highly modularized learning system. Ev-

ery small circles, ellipses, and rectangles indicate modules.

UCB-B denotes UCB-Boltzmann selection method.

egy.

UCB-Boltzmann selection method : choosing a behavior

module actually used in each learning stage.

Fig. 1 illustrates the overview of the system. The system

maintains a set of module types. The LS modules generate

behavior modules from the types (Module Instances). Each

behavior module is used to decide a behavior of the robot

and learn a task. Some of the LS modules generate behav-

ior modules from existing behavior modules (e.g. a transfer

LS). The system has multiple behavior modules for each task.

Each behavior module has upper confidence bound (UCB)

as an evaluation value which is calculated from reward ob-

servation. In each learning stage, a behavior module that ac-

tually decides the movement of the robot is chosen from the

whole set of behavior modules by UCB-Boltzmann selection

method. UCB-Boltzmann selection method is Boltzmann

— 1 —

selection method with UCB, which enables a probabilistic

exploration. The selected behavior module is trained during

the learning stage. Thus, each behavior module is generated

through a sequence of LSs, and the selection of behavior

modules means the selection of a proper LS sequence for the

task. The core algorithm is referred to as LS fusion method.

This paper also defines the following LSs:

LS-scratch generates a behavior module that learns a task

from scratch using WF-DCOB [1].

LS-accelerating generates a behavior module by accelerat-

ing the motion of a source behavior module.

LS-freeing generates a behavior module by increasing the

DoF of a source behavior module.

LS-planning generates a behavior module that uses a

model-based RL method such as Dyna [6].

LS-hierarchy generates a hierarchical action space module.

Here, the LS-accelerating and the LS-freeing are transfer

learning methods [5]. A remarkable feature of these trans-

fer LSs is that the LSs transfers not only policy parameters,

but also physical limitation of the policy.

The proposed LS fusion is applied to a maze task of the

simulated humanoid robot where the robot learns not only

a path to goal, but also a crawling and a turning motions.

The rest of this paper is organized as follows. Section 2.

describes LS fusion method, Section 3. defines the LSs, Sec-

tion 4. demonstrates the experiments, and Section 5. con-

cludes this paper.

2. Learning Strategy Fusion

LS fusion consists of two elements: (1) the LSs, and

(2) UCB-Boltzmann selection. There are two types in LSs;

behavior LSs that generate new behavior modules, and sup-

plementary LSs that generate supplementary modules other

than behaviors, such as model modules and hierarchical-

action-space modules. Let LSbhv denote the set of the be-

havior LSs, LSspl denote the set of the supplementary LSs.

UCB-Boltzmann selection method chooses a behavior from

both the existing behavior modules and the new ones gener-

ated by the behavior LSs. The selected behavior module is

used to actually control the robot, and the module is updated

its policy from samples.

We design LS fusion so that the behavior and the sup-

plementary modules are generated and learned through the

following flow:

(1) The supplementary LSs generate modules if applica-

ble.

(2) The behavior LSs generate new behavior modules.

Specifically, the LS-scratch generates new behaviors

which may have different DoF configurations. If there

are behaviors trained enough, the LS-freeing and the

LS-accelerating generate new behavior modules by

transferring the trained behaviors.

(3) UCB-Boltzmann selection method chooses a behavior

module from both the existing behavior modules and

the new ones generated in (2).

(4) Several episodes are performed using the selected be-

havior module, and the policy of the behavior module

is updated from samples. The supplementary modules

are also updated if possible.

(5) (1). . . (4) are repeated.

Here, UCB (upper confidence bound) uses both the mean

of a reward summation RB and its deviation σB . The de-

viation σB can estimate the potential improvement of the

performance. The deviation σB is also used to judge if a

behavior module is trained enough.

2. 1 LS Fusion Algorithm

We assume that several pairs of a control command space

and a state space {(Ũ ,X)} are predefined; they have dif-

ferent DoF configurations. Here, defining Ũ and X means

giving conversions between (Ũ ,X) and the overall (full DoF)

command and state spaces (Ũw,Xw). Specifically, we assume

linear conversions with constant matrices CŨ and CX such

that ũw = CŨ ũ, x = CXxw where ũ ∈ Ũ , ũw ∈ Ũw, x ∈ X ,

and xw ∈ Xw.

Each behavior learning strategy LS is defined as a func-

tion GENbhv(LS ,U ,X ,Task) that generates behavior mod-

ules, and each supplementary learning strategy is defined as

a function GENspl(LS ,Task) that generates supplementary

modules.

The LS fusion algorithm is defined for an episodic task.

Algorithm1 shows the overall algorithm(*1). Here, NLSSp is

an interval of executing the supplementary LSs (LSSp means

LS Supplementary), NLSBh is an interval of executing the be-

havior LSs (LSBh means LS Behavior). NLSBh > 1 is needed

to compute the valid reward statistics (we choose NLSSp = 20

and NLSBh = 10 in the experiments). UCB-Boltzmann se-

lection method chooses a behavior module from both the

existing B and new behavior modules generated by the be-

havior LSs. Note that only the selected new behavior module

is added into B.

Thus, the key element of LS fusion is each LS (GENbhv,

GENspl) and UCB-Boltzmann selection method. Note that

LS fusion works with any LS for that GENbhv or GENspl is de-

fined. The rest of this section describes the reward statistics

and UCB-Boltzmann selection method. In the next section,

we specify the LSs used in this thesis.

2. 2 Reward Statistics

We evaluate the performance of a behavior module by

R ,
P

t rt

T
, where {rt|t = 1, 2, . . . } denotes the observed re-

ward sequence in an episode, and T denotes total time in the

episode. The definition of R depends on a task. In general,

a sum of reward (return) may be used, but in our crawling

task, this definition is suitable to select a better behavior

module, especially in the early stage of learning.

(*1)：In implementing this algorithm, the size of B is limited to 20

per a task to prevent the large memory usage. If the size exceeds the

limit, a behavior module that has the minimum UCB of RUCB except

for Bnext is removed from B.

— 2 —

Algorithm 1: Learning strategy fusion

Input:Task Task , behavior modules B,

state-space modules {X}, action-space modules: {U},
dynamics-model modules {Mdyn}, reward-model modules

{Mrwd}
/∗ {Mdyn} and {Mrwd} may be empty ∗/

1: for Neps = 1, 2, . . . do /∗ Neps: episode number ∗/

2: if Neps modNLSSp = 0 then

3: for each LS ∈ LSspl do

4: {X}, {U}, {Mdyn}, {Mrwd} ← GENspl(LS ,Task)

5: if Neps modNLSBh = 0 then

6: /∗ select a behavior module: ∗/

7: Bnew ← {}
8: for each (U ,X) do

9: for each LS ∈ LSbhv do

10: Bnew ← Bnew ∪ GENbhv(LS ,U ,X ,Task)

11: Select Bnext from B∪Bnew by UCB-Boltzmann selection

12: if Bnext ∈ Bnew then B′ ← B ∪ {Bnext} else B′ ← B
13: return Bnext,B′

14: Perform the episode with Bnext:

Bnext is updated by its own learning algorithm

{Mdyn}, {Mrwd} are updated if possible

15: Update the reward statistics RBnext , R
2

Bnext , σmaxBnext

Since each behavior module is updated to obtain better

policy, its performance changes with episodes. Thus, we

compute the mean and the standard deviation of R with

forgetting the old data, and use them to select a behavior

module. Let RNeps the observation at an Neps-th episode.

The reward statistics RB , R2
B are updated by

RB ← αRRNeps + (1− αR)RB , (1)

R2
B ← αRR2

Neps + (1− αR)R2
B , (2)

where αR is a learning rate. The standard deviation of R

can be obtained by σB = (R2
B − R

2
B)1/2. Additionally, at

the end of each episode, σmaxB is updated which is used in

some LSs.

The reward statistics RB , R2
B are initialized by zero if B

is generated by the LS-scratch. If B is generated by the LS-

accelerating or the LS-freeing, the statistics are initialized by

the source behavior module’s values.

2. 3 UCB-Boltzmann Selection

We employ UCB of R to evaluate the priority of search.

Additionally, we use Boltzmann selection to probabilistically

select a behavior module.

The UCB of R is defined by

RUCBB , RB + fUCBσB (3)

where fUCB is a real constant value that decides the weight

of expected improvement (typically 1 or 2).

According to Boltzmann selection, the probability to select

B is defined as

π(B) ∝ exp(
1

τlsd
RUCBB) (4)

where τlsd is a temperature parameter to adjust randomness.

We decrease τlsd with τlsd = τlsd0 exp(−δτlsdNeps).

3. Learning Strategies

This section defines the LSs, namely, defines a function

GENbhv(LS ,U ,X ,Task) or GENspl(LS ,Task) for each learn-

ing strategy LS . Every behavior module B has information,

Task (B): a task that B is learning, LS (B): a learning strat-

egy with which the behavior module is generated, U (B): an

action space and X (B): a state space where the behavior

module learns, and K(B): a set of BFs.

The LS-scratch requires that an RL method is (1) efficient

in a learning-from-scratch case, and (2) suitable to define the

LS-accelerating and the LS-freeing. Thus, we utilize WF-

DCOB [1] for these LSs, since WF-DCOB is efficient in a

learning-from-scratch case like a discrete action set but ex-

plores continuous actions stably. Additionally, WF-DCOB

explicitly has parameters related to a speed of motion and

target joint angles, which is suitable for the LS-accelerating

and the LS-freeing.

In WF-DCOB, a continuous action space is generated from

a set of BFs given to approximate a value function, then

wire-fitting [7] is utilized to learn over the continuous ac-

tion space. An element in the continuous action space is

denoted as u = (g, qtrg), where g ∈ R is called an inter-

val factor that decides a speed of motion, and qtrg ∈ Q is

the target joint angles of a trajectory. WF-DCOB’s config-

urations are Cp(x): a function that extracts q ∈ Q from a

state x ∈ X , Cd(x): a function that extracts the deriva-

tive of q ∈ Q from a state x ∈ X as q̇ = Cd(x), and

IR: a set of ranges of the interval factors. The action

space defined by these configurations is learned using wire-

fitting. Wire-fitting is an interpolator whose parameters are

Θ> = (θ>
1 , U>

1 , θ>
2 , U>

2 , . . . , θ>
|W|, U

>
|W|). Here, θi encodes an

action value, and Ui encodes an action. The LS-accelerating

and the LS-freeing are realized by modifying the action pa-

rameters {Ui}. Please see [1] for the detail of WF-DCOB.

3. 1 LS-Scratch

The function GENbhv(LS-scr,U ,X ,Task) generates a be-

havior module if U is a command space Ũ and there is no

behavior module of the same setup. Namely, a module is

generated if B does not include a behavior module B such

that LS (B) = LS-scr, U (B) = Ũ , and X (B) = X . The rea-

son of preventing a generation of the same setup is that the

probability that the new behavior module obtains better per-

formance than the existing one is not high. A new behavior

module Bnew uses WF-DCOB with Q(λ)-learning, where a

default (predefined) set of BFs is employed. If a default set

of BFs is not predefined for X , a new behavior module is

not generated(*2). WF-DCOB’s configurations Cp, Cd, Ctrl ,

IR are assumed to be predefined for each (Ũ ,X). Since this

behavior module learns from scratch, the parameters of wire-

fitting are initialized as the WF-DCOB’s manner.

(*2)：In the following experiments, X16 is the case.

— 3 —

3. 2 LS-Accelerating

The LS-accelerating generates behavior modules from

source behavior modules that have the same command and

state spaces. Also, the generation with the same setup is pre-

vented, and this LS works with only a command space. The

acceleration is performed by multiplying the interval factor

of the source module’s WF-DCOB by a real constant value

faccel < 1.

Specifically, in the function GENbhv(LS-accel, Ũ ,X ,Task),

for each Bsrc such that U (Bsrc) = Ũ and X (Bsrc) = X , a

new behavior module Bnew is generated if the conditions are

satisfied:

(1) B does not include a behavior module B such that

LS (B) = LS-accel and Src(B) = Bsrc,

(2) σBsrc/σmaxBsrc < σth,

where Src(B) denotes the source behavior module of B, σB

denotes a deviation of B’s return, and σmaxB denotes its

maximum. Thus, the condition (2) checks if Bsrc almost

converged, namely, is trained enough. σth is a threshold.
Bnew uses the same BFs with Bsrc, namely K(Bnew) =
K(Bsrc). The parameters of wire-fitting of Bnew are copied

from Bsrc except for {U (Bnew)
i } that is multiplied by faccel.

Specifically, for each i ∈ W(Bsrc),

θ
(Bnew)
i = θ

(Bsrc)
i , (5)

U
(Bnew)
i = (g

(Bnew)
i , q

trg(Bnew)
i) = (faccelg

(Bsrc)
i , q

trg(Bsrc)
i). (6)

Additionally, the set of constraint range IR = {(gs
i , g

e
i)|i =

1, 2, . . . } is also modified: g
s(Bnew)
i = faccelg

s(Bsrc)
i , g

e(Bnew)
i =

faccelg
e(Bsrc)
i . Thus, the LS-accelerating transfers not only

the policy parameters, but also the limitation of the policy.

3. 3 LS-Freeing

The LS-freeing frees the DoF of a source behavior mod-

ule to larger DoF based on a predefined freeing direction F .

Each freeing direction F includes information, Ũ (F)
src , X (F)

src ,

Ũ (F)
dest, and X (F)

dest which denote the spaces of a source behav-

ior module and the spaces of a destination behavior module.

This LS works with only a command space.

In the function GENbhv(LS-free, Ũ ,X ,Task), for each pair

of (F, Bsrc) such that Ũ (F)
dest = Ũ , X (F)

dest = X , U (Bsrc) = Ũ (F)
src ,

and X (Bsrc) = X (F)
src , a new behavior module Bnew is gener-

ated if the conditions are satisfied:

(1) B does not include a behavior module B such that

LS (B) = LS-free, Ũ (B) = Ũ , X (B) = X , and Src(B) =

Bsrc,

(2) The same as the condition (2) of the LS-accelerating.

The condition (1) is to prevent to generate with the same

setup.

Bnew is initialized so that its action value function is al-

most the same as that of Bsrc. To do this, first, the free-

ing matrices DŨ and DX are calculated so that the conver-

sions ũdest = DŨ ũsrc, xdest = DXxsrc are performed where

ũdest ∈ Ũ (F)
dest, ũsrc ∈ Ũ (F)

src , xdest ∈ X (F)
dest, and xsrc ∈ X (F)

src .

We define these matrices as

DŨ = C]

Ũ(F)
dest

CŨ(F)
src

, DX = CX (F)
dest

C]

X (F)
src

, (7)

where] denotes a pseudo-inverse. The parameters of the

Bnew’s BFs are calculated as

µ
(Bnew)
k = DXµ

(Bsrc)
k , Σ

(Bnew)
k = DXΣ

(Bsrc)
k D>

X , (8)

for each k ∈ K(Bsrc). The parameters of wire-fitting are ini-
tialized as

θ
(Bnew)
i = θ

(Bsrc)
i , (9)

U
(Bnew)
i = (g

(Bnew)
i , q

trg(Bnew)
i) = (g

(Bsrc)
i , DŨq

trg(Bsrc)
i), (10)

for each i ∈ W(Bsrc). In this case, IR is not changed.

3. 4 LS-Planning

The function GENbhv(LS-pln,U ,X ,Task) generates a be-

havior module if U is a discrete action space. Also, the

generation with the same setup is prevented. A new behav-

ior module uses Dyna-MG [6] where we use Q(λ)-learning

instead of Q(0)-learning. Here, a default set of BFs is em-

ployed to linearly approximate the value function, and the

reward and the dnyamics models.

3. 5 LS-Hierarchy

The function GENspl(LS-hier,Task) generates a hierarchi-

cal action space H. The LS-hierarchy assumes that each

task has a category label. A hierarchical action space is gen-

erated as a set of subtasks that have a same category label.

Thus, the LS-hierarchy does not construct a hierarchical ac-

tion space in a fully automatic manner. When an action in

H is selected, the LS fusion algorithm is also used to ex-

ecute the subtask. If a subtask is a continuing task (the

HumanoidML-crawling and the HumanoidML-turning tasks

are the case), we need to configure a duration of the subtask.

4. Experiments – HumanoidMaze

LS fusion is applied to a maze task of the simulated hu-

manoid robot. In this task, the robot learns from scratch,

namely, it learns not only a path to goal, but also a crawling

and a turning motions. This task is referred to as Humanoid-

Maze. In order to train the robot, we specify a task sequence;

0-th to 1499-th episode: the crawling task, 1500-th to 2499-

th episode: the turning-left task, 2500-th to 3499-th episode:

the turning-right task, and 3500-th to 3999-th episode: the

maze task.

In this learning, each LS is expected to be used in the

following scenario:

(1) The primitive tasks (crawling and turning) are learned

with the LS-scratch, the LS-freeing, and the LS-

accelerating.

(2) The LS-hierarchy generates a hierarchical action space

in which the primitive tasks are treated as the subtasks.

(3) The LS-planning generates a behavior module for the

maze task where the hierarchical action space is used.

4. 1 Task Setup

Fig. 2 shows the simulation model of the robot. Its height

is 0.328m. It weights 1.20kg. Each joint torque is limited

to 1.03Nm, and a PD-controller is embedded on it. The fol-

lowing experiments are performed on a dynamics simulator,

— 4 —

Fig. 2 Simulation model of a humanoid robot.

Fig. 3 DoF configurations and possible freeing directions. Each

encircled number shows an index of dimension; joints with

the same number are coupled. Each arrow shows that free-

ing is possible in this direction.

ODE(*3), with a time step 0.2ms. LS fusion is implemented

with the RL library, SkyAI(*4).

We use six sets of DoF configurations (Fig. 3): 3-DoF

(Ũ3,X3), 4-DoF (Ũ4,X4), 5-DoF (Ũ5,X5), 6-DoF (Ũ6,X6),

7-DoF (Ũ7,X7), and 16-DoF (Ũ16,X16). In 3, 5, 6, and 7-

DoF configurations, some joints are coupled to be bilaterally

symmetric. In the 4-DoF, each leg has one DoF. In the 16-

DoF, only the head link is fixed, while the other joints move

independently.

The possible freeing directions between these DoF config-

urations are defined as shown in Fig. 3. Each arrow shows

that freeing is possible in this direction.

The objective of the crawling task is to move forward as

fast as possible. The objective of the turning task is to turn

around the z-axis as fast as possible. In the both tasks, each

episode begins with the initial state where the robot lies down

and stationary, ends if t > 20[s] or the sum of reward is less

than −40, which is caused by falling-down penalty. The ob-

jective of the maze task is to find a path from a start to a

(*3)：Open Dynamics Engine: www.ode.org

(*4)：SkyAI: skyai.sourceforge.net

goal. When the robot reaches the goal, reward 10 is given

and the episode is terminated.

4. 2 Learning Method Configurations

We choose the parameters of LS fusion (denoted as LSF

in the experiments) as follows: fUCB = 2, αR = 0.05,

NLSBh = 10, NLSSp = 20, τlsd0 = 20, δτlsd = 0.004, σth = 0.2,

and faccel = 0.95. The LS-scratch generates a behavior mod-

ule whose parameters are set as τ0 = 2, δτ = 0.02 for Boltz-

mann selection of the decreasing temperature parameter τ =

τ0 exp(−δτNepsB) where NepsB denotes a number of episodes

performed by the behavior module B. The parameters of

WF-DCOB are as follows: Cp(x) = qND , Cd(x) = q̇ND for

x ∈ XND , and IR = {(0.05, 0.1), (0.1, 0.2), (0.2, 0.3)} for ev-

ery configurations. The LS-accelerating and the LS-freeing

generate a behavior module of the parameters τ0 = 0.1,

δτ = 0.02 since the behavior module starts from an almost

converged policy. Every behavior modules use Peng’s Q(λ)-

learning with γ = 0.9, λ = 0.9, and a decreasing step size

parameter α = min(0.05, 0.3 exp(−0.002NepsB)).

4. 3 Results

We execute 10 runs. Fig. 4 shows the learning curves of

the first five runs of LSF (ex0,...,ex4). In the learning stage

of the crawling and the turning tasks, we can find that the

scenario (1) is achieved. Fig. 5 shows a learning curve and a

behavior module transition in a run obtained in ex0 of Fig. 4.

This graph shows how the set of behavior modules increases.

Fig. 6 shows the resulting learning curves of the task (the

mean of the return per episode over 10 runs). In learning the

maze task, one out of ten runs fails to acquire a path to goal.

The major factor is considered to be a poor connection be-

tween the crawling policy and the turning policy. Using such

policies as low-level actions may remove the Markov property

from the maze task. Thus, the robot fails in the maze task.

Such a failure will be avoided by mixing the primitive tasks

in the primitive learning stage. This difficulty is not spe-

cific to LS fusion, but may arise in the other hierarchical RL

methods. Thus, this failure does not dismiss the claim that

LS fusion has a scalability to complex tasks.

Fig. 7 shows snapshots of an acquired behavior at the end

of the maze task. We can see that the robot moves from

start to goal by using the crawling and the turning motions.

5. Conclusion

This paper proposed the learning strategy (LS) fusion

method where some LSs are integrated for learning a single

task by a single robot. As the LSs, we defined the LS-scratch,

the LS-accelerating, the LS-freeing, the LS-planning, and the

LS-hierarchy. In the LS fusion algorithm, upper confidence

bound (UCB) and Boltzmann selection method are employed

to decide when and which LS is applied.

The proposed LS fusion was verified in a maze task of the

simulated humanoid robot. In this task, the robot learned

not only a path to goal, but also a crawling and a turning

motions.

— 5 —

Fig. 4 Learning curves of five runs obtained from LSF. Each solid

line shows the return per episode, and each circle shows

the return acquired by a behavior generated by the LS-

scratch.

Fig. 5 Learning curve and module transition in a run obtained

from LSF (ex0 in Fig. 4). The dotted line shows the re-

turn per episode, each circle shows the return acquired by

a behavior generated by the LS-scratch, and the solid line

shows the index of the selected behavior module in each

episode.

Fig. 6 Resulting learning curves of the HumanoidMaze task

where the task changes at 1500, 2500, 3500-th episode.

Each curve shows the mean of the return over 10 runs per

episode.

Fig. 7 Snapshots of an acquired behavior at the end of the Hu-

manoidMaze task (taken in 1-FPS).

Our LS fusion architecture has a wide applicability; in-

troducing the other LSs, such as using importance sampling

technique [8] and imitation learning, is our future work.

Acknowledgements Part of this work was supported

by a Grant-in-Aid for JSPS, Japan Society for the Promo-

tion of Science, Fellows (22·9030).

Bibliography

[1] A. Yamaguchi, J. Takamatsu and T. Ogasawara: “Con-

structing continuous action space from basis functions for

fast and stable reinforcement learning”, the 18th IEEE In-

ternational Symposium on Robot and Human Interactive

Communication (RO-MAN’09), Toyama, Japan, pp. 401–

407 (2009).

[2] J. Morimoto, S. Hyon, C. Atkeson and G. Cheng: “Low-

dimensional feature extraction for humanoid locomotion us-

ing kernel dimension reduction”, the IEEE Internactional

Conference in Robotics and Automation (ICRA’08), pp.

2711–2716 (2008).

[3] Y. Takahashi and M. Asada: “Multi-layered learning sys-

tems for vision-based behavior acquisition of a real mobile

robot”, Proceedings of SICE Annual Conference 2003, pp.

2937–2942 (2003).

[4] J. Kober and J. Peters: “Learning motor primitives for

robotics”, the IEEE Internactional Conference in Robotics

and Automation (ICRA’09), pp. 2509–2515 (2009).

[5] L. Torrey and J. Shavlik: “Transfer learning”, Handbook of

Research on Machine Learning Applications (Eds. by E. So-

ria, J. Martin, R. Magdalena, M. Martinez and A. Serrano),

IGI Global, chapter 11 (2009).

[6] R. S. Sutton, C. Szepesvári, A. Geramifard and M. Bowling:

“Dyna-style planning with linear function approximation

and prioritized sweeping”, Proceedings of the 24th Confer-

ence on Uncertainty in Artificial Intelligence, pp. 528–536

(2008).

[7] L. C. Baird and A. H. Klopf: “Reinforcement learning with

high-dimensional, continuous actions”, Technical Report

WL-TR-93-1147, Wright Laboratory, Wright-Patterson Air

Force Base (1993).

[8] E. Uchibe and K. Doya: “Competitive-cooperative-

concurrent reinforcement learning with importance sam-

pling”, In Proc. of International Conference on Simulation

of Adaptive Behavior: From Animals and Animats, pp. 287–

296 (2004).

— 6 —

