
SkyAI: Highly Modularized Reinforcement Learning Library
— Concepts, Requirements, and Implementation —

Akihiko Yamaguchi and Tsukasa Ogasawara

Abstract— This paper introduces a software library of re-
inforcement learning (RL) methods, named SkyAI. SkyAI is
a highly modularized RL library for real/simulated robots to
learn behaviors. Our ultimate goal is to develop an artificial
intelligence (AI) program with which the robots can learn to
behave as their users’ wish. In this paper, we describe the
concepts, the requirements, and the current implementation of
SkyAI. SkyAI provides two conflicting features: high execution-
speed enough for real robot systems and high flexibility to
design learning systems. We also demonstrate the applications
to crawling tasks of both a humanoid robot in simulation and
a real spider robot.

I. INTRODUCTION

Designing a behavior by only its objective is essential for
future robots, since this ability enables the end-users to teach
their wish to the robots easily. Reinforcement learning (RL)
is one of such technologies, thus, RL applications in robotics
are of great interest. There are a lot of researches of RL
applications to robotics [1]∼[8].

However, the RL methods require a lot of learning cost
in a large domain. Here, the learning cost means both the
computational cost and the sampling cost (e.g. falling down).
The latter one is crucial for a real robot. What is worse is that
the learning cost increases exponentially with the complexity
of the task and the robot (e.g. the degree of freedom). As
long as this problem is not solved, it is difficult to apply RL
methods to realistic tasks.

Many researchers are tackling to the learning cost issue.
The following strategies to improve the RL methods are
attempted so far: dimension reduction [2], model utiliza-
tion [3], hierarchical structure [4], [5], imitation of the
others [6], and reusing already learned knowledge [7].

These researches are focusing on specific ideas or issues;
the other aspects are often simplified. However, integrating
these methods is important to develop a realistic learning-
robot system. Thus, we develop SkyAI aiming to integrate
the RL or the other machine-learning methods so that many
developers of robotics (or the other fields) can design sophis-
ticated learning-robot systems. We believe that solving the
RL issues is an important step to create robot’s intelligence.

In the rest of this paper, we describe an overview of SkyAI
in section II. In section III, We mention about relation to the
other works. In section IV, we describe some examples about

Part of this work was supported by a Grant-in-Aid for JSPS, Japan Society
for the Promotion of Science, Fellows (22·9030)

A. Yamaguchi (JSPS Research Fellow) and T. Ogasawara are with
the Graduate School of Information Science, Nara Institute of Sci-
ence and Technology, 8916-5, Takayama, Ikoma, Nara 630-0192, JAPAN
{akihiko-y, ogasawar}@is.naist.jp

developing modules, in order to demonstrate how easily the
module developers can create a new module. In section V, we
introduce the already implemented modules in SkyAI, and
availability. In section VI, we demonstrate the applications to
crawling tasks of both a humanoid robot in simulation and a
real spider robot, and we conclude the paper in section VII.

II. SKYAI OVERVIEW

This section describes the principal concepts of SkyAI, the
requirements basing on the concepts, the solutions, and an
overview of a system with SkyAI.

A. Principal Concepts

1) High modularization: The approach of the SkyAI is
modularization of the RL or the other machine-learning algo-
rithms. Modular architecture enables the following features:
High extensibility: Modular architecture makes it easy to

create a new module by inheriting the other module.
Adding new functions, or specializing some functions are
realized by a little modification. Thus, the library can be
highly extensible.

High reusability of implementation: Modular architecture
can separate a task (problem) specific implementation
into some modules. Typical examples are reward modules
and low-level robot controller. In contrast, we can make
generic, i.e. highly reusable, modules.

High reusability of learned knowledge: Modular architec-
ture can also enhance the reusability of learned knowl-
edge, such as a learned policy by an RL algorithm, a
dynamics model, and a reward model.

2) High execution-speed and high flexibility: The SkyAI
must be executed in high speed, and should be highly
flexible. These are very important features to apply SkyAI to
real robot systems. Real robot systems require a high-speed
execution. On the other hand, we need a high flexibility like
script languages. Generally, these two features are conflict-
ing.

3) Developer friendly: Highly-modularized architecture
has many benefits as mentioned above, however, it
sometimes makes development difficult. SkyAI pursues a
developer-friendly implementation to boost the participation
of many researchers and developers.

B. Requirements and Solutions

1) Writing in a compiler language: To achieve the high
execution-speed, SkyAI should be written in a compiler
language. We select C++. In general, the C++ source code
is compiled to an executable code whose execution speed is

almost the highest level. This is very suitable for real robot
systems.

Each module is implemented as a class of C++. Generally,
communication between classes is performed by member
functions1. We basically use call-by-reference for the func-
tions, which enables high-speed communication.

2) Once compiled, reconfigurable infinitely: Once C++
source code is compiled, it is difficult to modify its behavior.
Thus, SkyAI wraps the C++ class system and provides a
script interface so that the modular structure can be changed
by the script after compiling the source code.

To change the modular structure dynamically, the member
functions for the communication between classes are needed
to be connected and disconnected. Thus, each member
function is encapsulated as a port class. Each module can
have any number of ports. Ports can be connected and
disconnected at any time in execution, which enables to
reconfigure the modular structure.

A script language is defined to provide an interface of
modular manipulations during execution. Specifically, instan-
tiating modules, connecting ports, and setting parameters of
the modules (e.g. a learning rate) can be described in the
script language.

3) Using standard preprocessor and compiler: To make a
module program compatible with the modular architecture,
the program should follow some rules and regulations of
SkyAI. Some similar software platforms, such as [9], provide
their own programs to generate system-compatible source
code. However, such a system often makes modification
complicated, which is not developer friendly.

In contrast, SkyAI provides some macros and templates2

to support the developers to easily write system-compatible
source code. The macros and the templates can be processed
by a standard preprocessor and compiler; code generators are
not required. Thus, it is easy for the developers to modify
source code with the system-compatibility.

C. Overview of System with SkyAI

The center of a software using SkyAI is an agent class.
The agent class manages whole module instances, and has
a parser of the script language. The agent class is provided
as generic one, that is, available in any applications. A user
instantiates the agent class and calls the parser from the C++
source code (basically, in the main function).

Fig. 1 illustrates an example modular structure around an
RL module. In an on-line learning system, there are several
kinds of cycles, such as episode, action, and time step of low-
level controller. The SkyAI modular architecture can handle
any number of cycles as shown in Fig. 1.

The SkyAI architecture enables to modularize RL algo-
rithms as generic ones. On the other hand, the user of SkyAI
should make task or robot specific modules, such as a low-
level robot controller. Thus, in order to apply SkyAI, (1) the
user implements some task or robot specific modules, then

1Public member variables are also available, but, they can be replaced by
so-called accessors.

2Strictly, template functions and template classes of C++.

Fig. 1. Example modular structure around an RL module.

(2) the user builds them with the provided modules and the
agent class, finally (3) the user writes a script for a specific
task.

III. RELATION TO OTHER WORKS

There are similar works to develop libraries of RL or the
other machine-learning methods. Compared to the libraries
written in script languages, such as Python and MATLAB,
SkyAI has a speed advantage. SkyAI is, therefore, considered
to be more suitable for real robot systems.

Some libraries mainly written in a script language use a
compiler language in crucial bottleneck parts. For example,
PyBrain [10] is written in Python, but some parts are written
in C/C++ which are referred from the Python code by
using SWIG3. The reason that SkyAI does not use such a
technology and defines a custom script language is (1) SkyAI
provides a composite module architecture to compose some
modules, and existing script languages are considered to be
not suitable to define a composite module, and (2) SkyAI
is using some features of C++ that are not supported by
SWIG. However, it is considered to be possible and useful
that we implement an interface of Python or the other script
languages. The important fact is that SkyAI is completely
written in C++ and provides an interface to manipulate the
modular architecture.

The core architecture of SkyAI is a middleware. There are
some middlewares for robotics, such as YARP4, ROS5, and
OpenRTM[9]. A objective of SkyAI is to make a learning
system by combining highly reusable modules. A highly
reusable module generally becomes small, so SkyAI needs
to prevent overhead of communication between modules.
Thus, we implement each port of a SkyAI’s module as a
encapsulated function of call-by-reference, whose overhead
may be smaller than that of the middlewares listed above.

IV. DEVELOPMENT OF MODULES

In this section, we describe some examples about de-
veloping modules, in order to demonstrate how easily the
module developers (including ordinary users) can create a
new module.

3Simplified Wrapper and Interface Generator: www.swig.org
4Yet Another Robot Platform: eris.liralab.it/yarp
5Robot Operating System: www.ros.org

A. Creating a New Module

As described above, modules and ports are classes of
C++. To make each module and port compatible with the
agent class, base classes are defined for modules and ports.
The developers/users need to inherit them and override
some member functions. However, using the macros, these
inheritances can be written in short. The following C++
code is an example of a module that simply accumulates
a double variable.

class MDoubleAccumulator : public TModuleInterface
{
public:

typedef MDoubleAccumulator TThis;
SKYAI_MODULE_NAMES(MDoubleAccumulator)

MDoubleAccumulator(const std::string &instance_name)
: TModuleInterface (instance_name),

sum_ (0.0l),
slot_reset (*this),
slot_add (*this),
out_sum (*this)

{
add_slot_port (slot_reset);
add_slot_port (slot_add);
add_out_port (out_sum);

}

protected:

double sum_;

MAKE_SLOT_PORT(slot_reset, void, (void), (), TThis);
MAKE_SLOT_PORT(slot_add,

void, (const double &r), (r), TThis);
MAKE_OUT_PORT(out_sum,

const double&, (void), (), TThis);

virtual void slot_reset_exec (void)
{

sum_= 0.0;
}

virtual void slot_add_exec (const double &r)
{

sum_+= r;
}

virtual const double& out_sum_get (void) const
{

return sum_;
}

};
SKYAI_ADD_MODULE(MRewardAccumulator)

Here, the super class TModuleInterface is the base
class of every module. Its constructor takes an instance
name as an argument. SKYAI_MODULE_NAMES macro gen-
erates basic member functions (including some overridings).
SKYAI_ADD_MODULE macro generates code to register a
module to a module manager. The module manager supports
the agent class to instantiate a module from a text name.
Through these steps, a module can be generated.

A port can be created in three steps. There are some sorts
of ports, but they are a kind of function objects, namely,
behave as a member function. In the first step, a port object
is generated by a macro, such as MAKE_SLOT_PORT. Its
arguments indicate a port name and a member function
signature (return type and argument declarations). Then, we
write two lines in the constructor of the module: initializer
and the add_slot_port function. Finally, we define a
member function whose signature should be the same as
the one indicated to the macro. The created port can be

connected to a corresponding port via the script language.

B. Parameter Handling Architecture

One of complications in C++ is to handle variables by a
text. SkyAI also provides a way to handle the parameters of
a module in the script language. For example, if we want to
handle the following structure type in the script language,

struct TSomeConfigurations
{

int X;
double Y;
std::vector<double> VecData;
std::vector<std::list<double> > CmpData;

}

just define a Register member function and a constructor
as:

TSomeConfigurations (TVariableMap &mmap)
{

Register(mmap);
}

void Register (TVariableMap &mmap)
{

AddToVarMap(mmap, "X" , X);
AddToVarMap(mmap, "Y" , Y);
AddToVarMap(mmap, "VecData", VecData);
AddToVarMap(mmap, "CmpData", CmpData);

}

Then, we can assign the values in the script language as
follows:

X = 12
Y = -2.1e+4
VecData = (1, 2.236, 3)

CmpData = {
[] = (0.1, 0.2, 0.3) // push back a list
[] = (0.4, 0.5, 0.6) // ditto

}

AddToVarMap is a template function which can generate
a variable handler for many types, even for template classes
such as std::vector.

Thus, if a developer is familiar with C++, it is easy for
the developer to make modules.

V. IMPLEMENTED MODULES AND AVAILABILITY

A. Implemented Modules

SkyAI already has about one hundred modules. Half of
them are generated via the C++ template system. These
modules include following important ones:
RL modules: As basic TD(λ)-learning algorithms, Peng’s

Q(λ)-learning [11] and Sarsa(λ) [12] are implemented.
Also, fitted Q iteration [13] is implemented. These imple-
mentations are designed to be applicable with any action-
value-function approximator modules that provide gradi-
ent w.r.t. their parameter vectors. As a hierarchical RL
algorithm, Cohen’s hierarchical RL (HRL) algorithm [14]
is implemented.

Function approximator modules: Function approximators
are used for the action value functions of the RL
modules. A generic linear function approximator
and wire-fitting [15] are implemented. The linear
function approximator works with any basis-functions

module that converts a state input to a feature vector.
Currently, normalized Gaussian network (NGnet) [16] is
implemented.

Action space modules: These modules define action spaces
for the RL modules. The most simple one is a holder
that outputs a control input specified by an RL module
during constant time. A module discretizer is defined
to discretize the control input space; it works with the
holder module. A discrete action space DCOB [1] is also
modularized.

Utility modules: Some utility modules are defined, such as
a data logger, a multiplier, an accumulator, a learning
manager which manages episodes, and a timer which
emits a signal in every specific interval.

Benchmarks: Currently, a two-dimensional maze task of a
continuous state-action space and a crawling task of a
simulation humanoid are implemented (same definitions
as [1]). Also, as an off-the-shelf robot module, a Bioloid
(made by ROBOTIS) controller is also provided. Its
crawling task is defined without additional sensors, i.e.
using only the sensors provided with the Bioloid.

B. Availability

The entire source code of the development version
and the documentation are available from the website
skyai.sourceforge.net, under the GNU General
Public License. SkyAI depends on the Boost C++ libraries,
and Octave (liboctave and its headers). Open Dynamics
Engine (ODE) is needed to use a humanoid benchmark.
SkyAI is developed on a Linux and is not built for other
other platforms yet, such as Microsoft Windows and Mac
OS. However, SkyAI is under active development, thus, will
become available on the other platforms.

VI. DEMONSTRATIONS

In this section, first, we show the results of the speed
test, then demonstrate an application to a crawling task of
a humanoid robot in simulation and a crawling task of an
actual spider robot.

A. Speed of Modular Communication

The largest execution cost in the SkyAI system is the
overhead of modular communication. Thus, we test the speed
of modular communication. We implement an equivalent
modular structure to the C++ code of Fig. 2, where N1 and
N2 are constant integers. We make two modules, MTest
as an equivalent module of TTest, and MRepeater for
repeating (Fig. 3). By observing the execution time, we can
know the overhead of modular communication compared to
the calculation time in the Step function.

Table I shows the execution time in second (the mean of
100 execution). “C++ class” denotes using TTest (normal
C++ class code), “No com” denotes using MTest (the
SkyAI module) but no modular communication (just called
the function of each port), and “Modular com” denotes
using MTest and MRepeater in a SkyAI’s manner. In
the N1 = 108, N2 = 100 case, “Modular com” takes much

class TTest
{
public:

void Init() {a_=1;}
void Step()

{for(int i(0);i<N2;++i) {a_+=(a_%10==0)?2:1;}}
void Print() {cerr<<a_<<endl;}

protected:
int a_;

};
int main(int argc, char**argv)
{

TTest test;
test.Init();
for (int i=0;i<N1;++i) test.Step();
test.Print();
return 0;

}

Fig. 2. C++ code for testing the speed of modular communication.

Fig. 3. Modular structure for testing speed.

TABLE I
EXECUTION TIME (SECOND)

N1 N2 C++ class No com Modular com
108 100 0.70 0.69 3.31
107 101 0.70 0.68 0.89
106 102 0.65 0.67 0.71
105 103 0.63 0.65 0.66

more time than the others. The reason is that the cost of
calculation in the Step function is quite small and almost
the same as the overhead of the modular communication. In
the other case, the execution time of the three are almost the
same. From the results, we can make out that if a process
of a port is very small, such as just a scalar calculation, the
modular communication cost is relatively large, but for an
usual process, such as update of an RL policy, the modular
communication cost can be ignored. Thus, SkyAI achieves
high-speed communication.

B. Demonstration of Humanoid Crawling Task in Simulation

We demonstrate an application to a crawling task of a
simulation humanoid (Fig. 5). The task definition is the same
as [1]. As an RL method, we apply DCOB and Q(λ)-learning
from scratch.

The program is built with the basic modules and some
task-specific modules. The task-specific modules are the
MHumanoidEnvironment module which simulates the
humanoid with ODE and receives the control command
signal, and MMotionLearningTask module which cal-
culates the reward of the crawling task by receiving the
state of the humanoid. The reward is mainly given for the
velocity of the center-of-mass of the body link. Then, we
write a script to setup the learning; a part of it is shown in

max-torque
 =2.06[Nm]

q2

q3

q4

q5

total-weight
 =1.20[kg]

z

x
y

0.328[m]

head

body

right foot
left foot

Fig. 5. Humanoid robot model whose
DoF is constrained to five. Fig. 6. Resulting learning curve of the crawling task

of the humanoid robot in simulation. The curve shows
the return per episode in a run.

Fig. 7. Sequence of an acquired crawling
motion.

module MBasicLearningManager , lmanager
module MHumanoidEnvironment , environment
module MMotionLearningTask , task
module MUserEmittedTimer , timer
module MBasisFunctionsDCOBNGnet , ngnet
module MAVFLinearDiscAction , avf_linear
module MTDGenericFuncApprox_TDiscreteAction, behavior
module MSimpleDataLogger2_TInt_TReal,logger_eps_return

module MLinearFunctionRv , action_converter
...

connect behavior.signal_execute_action ,
dcob.slot_execute_action

connect dcob.signal_execute_command ,
bftrans.slot_execute_action

connect timer.signal_start_of_step_ud1 ,
bftrans.slot_start_time_step

connect bftrans.signal_execute_command ,
action_converter.slot_x

connect action_converter.signal_y ,
environment.slot_execute_command_des_q

connect environment.signal_system_reward ,
rwd_accumulator.slot_add

connect task.signal_task_reward ,
rwd_accumulator.slot_add

connect bftrans.signal_end_of_action ,
behavior.slot_finish_action

connect behavior.signal_avf_add_to_parameter ,
avf_linear.slot_add_to_parameter

connect environment.signal_end_of_episode ,
behavior.slot_finish_episode

connect task.signal_end_of_episode ,
behavior.slot_finish_episode

...

behavior.config={
LearningAlgorithm = "laQLearning"
UsingEligibilityTrace = true
UsingReplacingTrace = true
Alpha = 0.3
AlphaDecreasingFactor = 0.002
Gamma = 0.9
Lambda = 0.9

}
action_converter.config ={

Factor ={
resize(17, 5)
[0]= (0, 0, 0, 0, 0)
[1]= (1, 0, 0, 0, 0)
[2]= (0, 0, 0, 0, 0)
[3]= (0, 1, 0, 0, 0)
[4]= (1, 0, 0, 0, 0)
[5]= (0, 0, 0, 0, 0)
[6]= (0, 1, 0, 0, 0)
[7]= (0, 0, 0, 0, 0)
[8]= (0, 0, 1, 0, 0)
[9]= (0, 0, 0, 1, 0)
[10]= (0, 0, 0, 0, 1)
[11]= (0, 0, 0, 0, 0)
[12]= (0, 0, 0, 0, 0)
[13]= (0, 0, 1, 0, 0)
[14]= (0, 0, 0, 1, 0)
[15]= (0, 0, 0, 0, 1)
[16]= (0, 0, 0, 0, 0)

}
}

...

Fig. 4. A part of the script for the crawling task of the humanoid robot
in simulation.

Fig. 4. The script mainly consists of three parts: instantiating
modules, connecting modules, and setting parameters. When
applying an RL method to a robot system, there are several
kinds of cycles; at least, episode, action, low-level control
time-step. The script of SkyAI can flexibly adjust to specific
systems as shown in Fig. 4. In this task, the degree-of-
freedom (DoF) of the robot is constrained to five. The module
action_converter defines this constraint by a matrix.
Thus, we can change it easily.

Fig. 6 shows a resulting learning curve (return per
episode), which is logged by the logger_eps_return
module. Fig. 7 shows an acquired crawling motion.

C. Demonstration of Crawling Task of Actual Spider Robot

Next, we demonstrate an application to a crawling task
of a spider robot (ROBOTIS Bioloid) shown in Fig. 8. The
Bioloid can be assembled into many shapes, such as a spider,
a humanoid, and a puppy. The Bioloid controller in SkyAI
can handle any number of actuators as follows:

environment.config ={
ActuatorIndexes = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10,

11, 12, 13, 14, 15, 16, 17, 18)
SensingAngleIndexes = (1, 3, 7, 9, 15)
DistanceSensorIndex = 100

}

In the crawling task, the DoF of the robot is also constrained
to five. Thus, only five angles are observed. We also define
the action_converter module like Fig. 4 according to
the constraint.

The experimental environment is setup as shown in Fig.
9. The robot is put in front of a wall. The robot has an
infrared distance sensor to observe the distance to the wall.
The horizontal velocity is calculated by differentiating the
distance value, which is given to the robot as reward. The
robot communicates using a serial protocol with a PC 6

into which the program with SkyAI is installed. Target joint
angles are sent to the robot in every 0.1[s].

We apply DCOB and Q(λ)-learning from scratch. Fig. 10
shows resulting learning curves (return per episode) in 4 runs.
Though the robot learns from scratch, it successfully acquires
a crawling motion in all runs. Fig. 11 shows snapshots of an
acquired motion.

6Pentium M, 2[GHz], 512[MB] RAM, Debian Linux.

Fig. 8. King Spider (ROBOTIS
Bioloid) which has 18 DoF. Its DoF
is constrained to five.

Fig. 9. Experimental environment of the
crawling task of the spider robot.

Fig. 10. Resulting learning curves of the crawling task of the spider
robot. Each curve shows the return per episode in a run.

Fig. 11. Snapshots of an acquired crawling motion (4.8[s], 5.4[s], 6.0[s],
7.2[s]).

VII. CONCLUSION AND FUTURE WORK

In this paper, we described the principal concepts, the
requirements, and the solutions of SkyAI. We also demon-
strated how easily a new module is created, and some appli-
cations that are also provided as benchmarks with SkyAI.

Thus, we consider that SkyAI already has an ability to
handle real world tasks. However, a lot of improvements are
possible. The critical ones are:
Improving the script language and GUI: A script seems

complicated due to its flexibility. We need to simplify
it. A graphical user interface is also useful.

Multi-threading: The current program works on only a
single thread. Multi-threading is desirable to speed-up
more.

Transporting to the other platforms: Current implementa-
tion may be available only on Linux. But, we are going
to transport to the other platforms, such as Microsoft
Windows and Mac OS.

Of course, implementing new modules of state-of-the-art RL
methods and more benchmark modules is an important future
work. We also have a plan to make an interface to the RL-
Glue [17] which is a language-independent software package
for RL experiments. We encourage researchers to joint the
SkyAI project. Please visit skyai.sourceforge.net.

REFERENCES

[1] A. Yamaguchi, J. Takamatsu, and T. Ogasawara, “Constructing action
set from basis functions for reinforcement learning of robot control,”
in the IEEE Internactional Conference in Robotics and Automation
(ICRA’09), Kobe, Japan, 2009, pp. 2525–2532.

[2] J. Morimoto, S. Hyon, C. Atkeson, and G. Cheng, “Low-dimensional
feature extraction for humanoid locomotion using kernel dimension
reduction,” in the IEEE Internactional Conference in Robotics and
Automation (ICRA’08), 2008, pp. 2711–2716.

[3] A. M. Farahmand, A. Shademan, M. Jägersand, and C. Szepesvári,
“Model-based and model-free reinforcement learning for visual ser-
voing,” in the IEEE Internactional Conference in Robotics and Au-
tomation (ICRA’09), Kobe, Japan, May 2009, pp. 2917–2924.

[4] J. Morimoto and K. Doya, “Acquisition of stand-up behavior by a
real robot using hierarchical reinforcement learning,” Robotics and
Autonomous Systems, vol. 36, no. 1, pp. 37–51, 31 July 2001.

[5] Y. Takahashi and M. Asada, “Multi-layered learning systems for
vision-based behavior acquisition of a real mobile robot,” in Proceed-
ings of SICE Annual Conference 2003, 2003, pp. 2937–2942.

[6] J. Kober and J. Peters, “Learning motor primitives for robotics,”
in the IEEE Internactional Conference in Robotics and Automation
(ICRA’09), 2009, pp. 2509–2515.

[7] J. Zhang and B. Rössler, “Self-valuing learning and generalization with
application in visually guided grasping of complex objects,” Robotics
and Autonomous Systems, vol. 47, no. 2-3, pp. 117–127, 2004.

[8] J. Peters, S. Vijayakumar, and S. Schaal, “Reinforcement learning
for humanoid robotics,” in Humanoids2003, IEEE-RAS International
Conference on Humanoid Robots, 2003.

[9] N. Ando, T. Suehiro, and T. Kotoku, “A software platform for com-
ponent based rt-system development: OpenRTM-Aist,” Simulation,
Modeling, and Programming for Autonomous Robots, vol. 5325, pp.
87–98, 2008.

[10] T. Schaul, J. Bayer, D. Wierstra, Y. Sun, M. Felder, F. Sehnke,
T. Rückstieß, and J. Schmidhuber, “Pybrain,” Journal of Machine
Learning Research, vol. 11, pp. 743–746, 2010.

[11] J. Peng and R. J. Williams, “Incremental multi-step Q-learning,” in
International Conference on Machine Learning, 1994, pp. 226–232.

[12] G. A. Rummery and M. Niranjan, “On-line Q-learning
using connectionist systems,” Cambridge University Engineering
Department, Tech. Rep. CUED/F-INFENG/TR 166, 1994.

[13] D. Ernst, P. Geurts, and L. Wehenkel, “Tree-based batch mode rein-
forcement learning,” Journal of Machine Learning Research, vol. 6,
pp. 503–556, 2005.

[14] S. Cohen, O. Maimon, and E. Khmlenitsky, “Reinforcement learning
with hierarchical decision-making,” in ISDA ’06: Proceedings of the
Sixth International Conference on Intelligent Systems Design and
Applications. USA: IEEE Computer Society, 2006, pp. 177–182.

[15] L. C. Baird and A. H. Klopf, “Reinforcement learning with
high-dimensional, continuous actions,” Wright Laboratory, Wright-
Patterson Air Force Base, Tech. Rep. WL-TR-93-1147, 1993.

[16] M. Sato and S. Ishii, “On-line EM algorithm for the normalized
Gaussian network,” Neural Computation, vol. 12, no. 2, pp. 407–432,
2000.

[17] B. Tanner and A. White, “Rl-glue: Language-independent software
for reinforcement-learning experiments,” Journal of Machine Learning
Research, vol. 10, pp. 2133–2136, 2009.

