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Abstract— This paper presents a new continuous action space
for reinforcement learning (RL) with the wire-fitting [1]. The
wire-fitting has a desirable feature to be used with action
value function based RL algorithms. However, the wire-fitting
becomes unstable caused by changing the parameters of actions.
Furthermore, the acquired behavior highly depend on the
initial values of the parameters. The proposed action space is
expanded from the DCOB, proposed by Yamaguchi et al. [2],
where the discrete action set is generated from given basis
functions. Based on the DCOB, we apply some constraints
to the parameters in order to obtain stability. Furthermore,
we also describe a proper way to initialize the parameters.
The simulation results demonstrate that the proposed method
outperforms the wire-fitting. On the other hand, the resulting
performance of the proposed method is the same as, or inferior
to the DCOB. This paper also discuss about this result.

Index Terms— Reinforcement learning, continuous action
space, motion learning, crawling, jumping.

I. INTRODUCTION

Many highly functional robots, such as humanoid robots,
can walk, jump, and perform other motions, but, prepro-
grammed ones only. The function to acquire a motion when
given an objective is essential to enhance human-robot in-
teraction. Reinforcement Learning (RL) is one of such tech-
nologies, and it has been applied to robot control [2]∼[13].
However, it is still an open problem to deal with robots that
have a large control input space Ũ . In this paper, we focus on
constructing an action space U from Ũ to achieve efficient
RL.

In many robotics applications of RL, action space U is
designed to be continuous, since the control input space Ũ
of the robot is continuous. Some researchers directly apply
RL to learn control input as actions, i.e. U = Ũ [3], [4],
[5], [6]. An alternative way is to convert the control input
space Ũ to a new action space U [7], [8], [9]. In these cases,
the constructed action space U is still continuous, but RL
is performed efficiently. Constructing a discrete action set is
a conventional approach [2], [10], [11], [12], [13]; but this
conversion enables us to apply fast RL algorithms easily,
such as Q(λ)-learning [14].

The problems in learning continuous actions are as fol-
lows: (1) difficulty to calculate arg maxu∈U Q(x, u), (2)
instability caused by changing the parameters of actions, and
(3) difficulty to decide the initial values of the parameters.
The wire-fitting solves problem (1), that makes it easy to

apply action value function based RL algorithms [1], [5].
However, problems (2) and (3) still remain.

In this paper, we propose a method to construct a
continuous action space that can solve these problems.
Yamaguchi et al. developed a sophisticated discrete action
set, DCOB [2], where the action set is generated from
given basis functions. Our proposed method is based on
this idea. Specifically, we expand the DCOB to be able to
learn continuous actions with the wire-fitting. Based on the
DCOB, we apply some constraints to the parameters in order
to obtain stability. Furthermore, we describe a way to decide
proper initial values of the parameters. Thus, the remaining
problems of the wire-fitting are relaxed.

II. REINFORCEMENT LEARNING WITH THE
WIRE-FITTING

A. Reinforcement Learning

The purpose of RL is that a system (agent) whose input
is a state, xn ∈ X , and a reward, Rn ∈ R, and whose
output is an action, un ∈ U , acquires the policy, π(xn) :
X → U , that maximizes the expected discounted return,
E

[∑∞
k=1 γk−1Rn+k

]
, where n ∈ N = {0, 1, . . . } denotes

the time step and γ ∈ [0, 1) denotes a discount factor. In
some RL methods, such as Q-learning [15] and Sarsa [16],
an action value function, Q(x, u) : X ×U → R, is learned to
represent the expected discounted return by taking an action
u from a state x. Then, the optimal action rule is obtained
from the greedy policy π(x) = arg maxu Q(x, u).

If X and/or U are continuous, a function approximator is
used for Q(x, u). The Peng’s Q(λ)-learning algorithm [14]
for a generic function approximator is written as follows:

Tr0 = 0 ∈ Θ (1a)
en = Rn + γVn(xn+1)− Vn(xn) (1b)
e′n = Rn + γVn(xn+1)−Qn(xn, un) (1c)

θn+1 = θn + αenTrn + αe′n∇θQn(xn, un) (1d)
Trn+1 = (γλ)(Trn +∇θQn(xn, un)) (1e)

Vn(x) , max
u

Qn(x, u) (1f)

where ∇θQn(xn, un) denotes the derivative of Q(x, u) with
respect to its parameter θ ∈ Θ.



B. Wire-Fitting

The wire-fitting is a function approximator which is com-
patible with action value function based RL algorithms [1].
It is defined as follows:

Q(x, u) = lim
ε→0+

∑
i∈W

(di + ε)−1qi(x)∑
i∈W

(di + ε)−1
(2)

di = ‖u− ui(x)‖2 + C
[
max
i′∈W

(qi′(x))− qi(x)
]
. (3)

Here, a pair of the functions qi(x) : X → R and ui(x) :
X → U (i ∈ W) is called a control wire; the wire-fitting is
regarded as an interpolator of the set of control wires, W . C
is a smoothing factor of the interpolation. As is obvious from
the definition, qi(x) is related to an action value, and ui(x)
is related to an action. In order to represent these functions,
some function approximators, such as neural networks, are
used. Regardless of the kind of the function approximators,
the wire-fitting has the following features:

max
u

Q(x, u) = max
i∈W

(qi(x)) (4)

arg max
u

Q(x, u) = ui(x)
∣∣∣
i=arg maxi′∈W(qi′ (x))

(5)

Namely, the greedy action at a state x is calculated only by
evaluating qi(x) for i ∈ W .

In this paper, we use a Normalized Gaussian Network
(NGnet) [17] for qi(x) and a constant vector for ui(x):

qi(x) = θ>i φ(x) (6a)
ui(x) = Ui (6b)

where φ(x) is a feature vector, that is, the output of the
NGnet. The k-th element of φ(x) is defined as follows:

φk(x) =
G(x;µk, Σk)∑

k′∈K

G(x; µk′ , Σk′)
(7)

where G(x; µ,Σ) denotes a Gaussian with mean µ and
covariance matrix Σ. Thus, the action value function is
approximated by eq. (2), (6), where the parameter vector
θ is defined as follows:

θ> = (θ>1 , U>
1 , θ>2 , U>

2 , . . . , θ>|W|, U
>
|W|). (8)

The gradient ∇θQ(x, u) can be calculated analytically. Thus,
we can apply the Q(λ)-learning (eq. (1)).

III. BASIS FUNCTION BASED ACTION GENERATION

In this section, we propose a novel technique for rein-
forcement learning in a continuous action space. Concretely,
we expand the DCOB, proposed by Yamaguchi et al. [2],
to be able to learn continuous actions with the wire-fitting.
In order to obtain stability, we apply some constraints to the
parameters. Furthermore, we describe a way to decide proper
initial values of the parameters.

A. Instability in Learning with the Wire-Fitting

First, we describe the instability of the wire-fitting. In
the wire-fitting, the parameters of ui(x), a control wire of
action, change during learning. Since ui(x) is used globally
in the state space to express an action value, changing the
parameters of ui(x) has global effects. The update of the
parameters is performed with the local observation, so, that
may cause the slow convergence.

For instance, let us assume that ui(x) is the greedy action
both at the state x = x1 and x = x2. If the agent observes a
reward at near x = x1 and updates the parameters of ui(x),
that affects the greedy action at x = x2. In this case, the
agent should learn the greedy action at x = x2 again.

In addition to this instability, it is difficult to initialize the
parameters of the control wire, Ui, properly. In the following
experiments, the wire-fitting often converges to a poor local
maxima.

B. The DCOB

The action set DCOB stands for Directed to a Center Of a
Basis function, since each action is designed as a trajectory
calculated from the current state and a center of a basis
function [2]. Thus, the idea of DCOB is to construct a
discrete action set given a set of basis functions (BFs) that
have a center in the state space as a parameter. The DCOB
can exploit the function approximator’s nature, that is, the
number of the BFs does not increase exponentially with the
dimension of the state space.

The DCOB assumes the following:

(a) Each BF k∈K has a fixed center µk∈X .
(b) Q, Cp(x) and Cd(x) are defined as follows. Q: a space

in which a trajectory is defined (e.g. a joint angle space).
Cp(x): a function that extracts q∈Q from a state x∈X
as q = Cp(x) : X → Q. Cd(x): a function that extracts
the derivative of q∈Q (e.g. joint angular velocities) from
a state x∈X as q̇ = Cd(x).

(c) A function to follow the designed trajectory qd(t), that
is, calculate a control input ũ∈Ũ (e.g. torques) from the
trajectory is given as ũ(t) = Ctrl(x(t), qd(t + δt)), such
as a PD controller. δt denotes a time step size to generate
the trajectory.

An action a ∈ A of the DCOB consists of a given target
BF k ∈ K, and an interval Tf∈I, namely, A = K×I. When
an action a = (k, Tf) is selected at a time step n, the actual
control input ũ ∈ Ũ is determined through the following
three steps:

At a time step n ∈ N, a current time tn ∈ R,
and a current state xn = x(tn),

For a given target BF k∈K, and an interval Tf∈I,
1. Generating a reference trajectory qd(tn + ta), ta∈[0, Tf ]

with which the robot can transit from the current state
xn to the center of the target BF µk in the interval Tf .
Specifically, qd is expressed by a cubic function (9) whose
coefficients are calculated from the boundary conditions



(10):

qd(tn + ta) = c0 + c1ta + c2t
2
a + c3t

3
a (9){ qd(tn) = Cp(xn), qd(tn + Tf) = Cp(µk),

q̇d(tn + Tf) = Cd(µk), q̈d(tn + Tf) = 0.
(10)

2. Abbreviating the trajectory to ta∈[0, Tn(xn, k)] where
Tn(xn, k) 6 Tf is decided from xn and k. Since the
trajectory of step 1 may change the state greatly, the
behavior, i.e. a sequence of the trajectories, is coarse.
To make the behavior fine, the reference trajectory is
abbreviated by an estimated distance to a neighbor BF.

3. Following the abbreviated trajectory with a controller
ũ(tn + ta) = Ctrl(x(tn + ta), qd(tn + ta + δt)),
ta∈[0, Tn(xn, k)). The trajectory is terminated at t =
tn + Tn(xn, k), the action ends, and the time step n is
incremented by one.

The role of the interval Tf is to configure the speed of the
action. In order to relax the problem that the speed of the
action changes with the distance between the current state
xn and µk even for the same Tf , we define I as follows:

δCp(xn, µk) = max
j

(Cp(µk)[j] − Cp(xn)[j]) (11)

I = {g`δCp(xn, µk) | g` ∈ (0,∞), ` = 1, 2, . . . } (12)

where Cp(·)[j] denotes j-th element of Cp(·), and g` is a
positive constant. In the following, we call δCp(xn, µk) an
interval unit, and g` an interval factor. See [2] for detailed
descriptions of the DCOB.

C. Expanding the DCOB with the Wire-fitting

As described above, in the DCOB, the parameters to
generate a trajectory, namely, the centers of the BFs and
the interval factors are predefined and unchanged, which
may restrict the performance. Here, we expand the DCOB
with the wire-fitting so that these parameters are updated.
Concretely, we define the agent action u as consisting of a
target state and an interval factor. Namely, an action vector
takes the form u = (g, qtrg) ∈ R×Q where g is an interval
factor, and qtrg is a target state. g and qtrg are used to
generate a trajectory in a similar manner to the DCOB, and
are learned with the wire-fitting.

Moreover, we attempt to put constraints on the parameters
of ui(x) to reduce the instability. To do this, we also use the
function approximator defined in eq. (6) for the wire-fitting,
and set up the wire-fitting as follows:

I |W| = |K||IR| control wires are prepared. In this wire
set, each wire i ∈ W is related to a BF ki ∈ K and
an interval range (gs

i , g
e
i ) ∈ IR ⊂ R1×2, 0 < gs

i 6 ge
i

where gs
i and ge

i are predefined constant.
I The parameter Ui of a control wire i consists of an

interval factor gi ∈ R and a target state qtrg
i ∈ Q, i.e.

Ui = (gi, q
trg
i ) ∈ R×Q.

I An action u = (g, qtrg) is executed in a similar manner
to the DCOB, but Cp(µk), Cd(µk), and Tf are replaced
by qtrg

i , 0, and giδCp(xn, µk) respectively in eq. (10) of
the Generating step in the DCOB. The Abbreviating and
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Fig. 1. Illustration of the comparison of the DCOB (top) and the WF-
DCOB (bottom). There is a one-to-one correspondence between the action
set of the DCOB and the control wire set of the WF-DCOB. A target state
corresponds to the center of a target BF, but the target state is updated by
RL in the WF-DCOB though the center of the target BF is predefined and
unchanged in the DCOB.

the Following steps to generate the actual control input
are performed in the same manner.

We can execute an action u = (g, qtrg) selected from the
action value function represented by the wire-fitting with the
above configuration, and update the parameters of the wire-
fitting by the Q(λ)-learning (eq. (1)) from the observation.
In addition to this, we can naturally add the following
constraints to the parameter Ui = (gi, q

trg
i ):

Constraining a target state qtrg
i to be near the center of the

related BF ki ∈ K. Specifically,

if ‖qtrg
i − Cp(µki)‖ > FndQn (ki) then

qtrg
i ← Cp(µki) + FndQ

n (ki)
(qtrg

i − Cp(µki))
‖qtrg

i − Cp(µki)‖
(13)

where dQ
n (ki) denotes a distance to the nearest BF from

the BF ki in Q space, and Fn is a positive constant to
adjust it (typically, Fn=1). dQn (k) is defined as follows:

kQ
n (k) = arg min

k′∈K,k′ 6=k
‖Cp(µk′)− Cp(µk)‖ (14)

dQ
n (k) = max (‖Cp(µkQ

n (k))− Cp(µk)‖, dQ
min k) (15)

where dQ
min k is a constant related to the BF k to adjust

dQn (k) for very small ‖Cp(µkQ
n (k)) − Cp(µk)‖. For a

NGnet case, we choose the maximum eigenvalue of the
covariance matrix of the BF 1.

Constraining an interval factor gi to be inside the interval
range, that is, gi ∈ [gs

i , g
e
i ].

As described in section III-A, the instability of the wire-
fitting is caused by changing the parameters of ui(x) that
affects the action value globally. This instability is reduced

1The predefined BFs are allocated in the state space X , while dQn (k) is
the distance in the Q space. Thus, we have to convert the covariance matrix
Σk . For linear Cp(x) = Ĉpx where Ĉp is a constant matrix, the conversion
is performed as ΣQ

k = ĈpΣkĈ>
p . In this case, dQmin k is defined as the

maximum eigenvalue of ΣQ
k .



by the constraints described above, since if the changing of
the parameters of ui(x) is small, the effect on the action
value is also small.

On the other hand, it seems that this constraints restrict
the performance of the agent. However, roughly speaking,
even if we fix the parameter Ui at the initial value, the agent
has a potential to learn the same performance to the DCOB.
This is possible because the number of the control wires are
prepared as large as the size of the action set DCOB. We call
this method as WF-DCOB. Fig. 1 illustrates the comparison
of the DCOB and the WF-DCOB.

D. Parameter Initialization of the WF-DCOB

The control wires with the constraints defined as the
previous section are regarded to be separating the action
space into |K||IR| small regions; each parameter Ui is
constrained to be inside its region. The regions are distributed
widely in the action space, so a proper way to decide the
initial value of the parameter Ui is to set it to be the center
of its region. Specifically, we initialize Ui = (gi, q

trg
i ) as

follows:

gi =
gs

i + ge
i

2
, qtrg

i = Cp(µki). (16)

IV. IMPLEMENTATION TECHNIQUES FOR THE
WIRE-FITTING

A. Constraint of the Norm of the Gradient

Since the wire-fitting is a nonlinear function approximator,
Q(λ)-learning sometimes diverges. In order to prevent this
problem, we constrain the norm of the gradient of the action
value function to be less than a small constant Cmaxgrad (we
choose Cmaxgrad = 1 for the following experiments):

if ‖∇θQn(xn, un)‖ > Cmaxgrad then

∇θQn(xn, un)← Cmaxgrad
∇θQn(xn, un)
‖∇θQn(xn, un)‖

.
(17)

B. Action Selection Method

How to select an action is an open problem in RL,
since it is a trade-off between exploration and exploitation.
A traditional method is the so-called ε-greedy [18]. Some
researchers use a kind of Gaussian policy (e.g. [3]). In this
paper, we use the Boltzmann selection, that is, select ui(x)
(i ∈ W) with the probability

π(i|x) =
exp(

1
τ

qi(x))∑
i′∈W

exp(
1
τ

qi′(x))
(18)

where τ is a temperature parameter. We decrease τ with
τ = τ0 exp(−δτNeps) so that the policy π(i|x) converges to
a greedy policy. Where Neps denotes a number of episodes.
The positive constants τ0 and δτ are empirically chosen as
the best ones for each domain.

In preliminary experiments, we add Gaussian noise to
ui(x), but adding noise does not have any advantages. Thus,
we let u(x) = ui(x) as the selected action.

Fig. 2. The map of the robot navigation task.

V. EXPERIMENTAL COMPARISON ON ROBOT
NAVIGATION TASK

First, we compare the DCOB, the WF-DCOB, and the
wire-fitting in a small dimensional task. Concretely, we apply
it to a very simple navigation task on a 2-dimensional plane.

For each action set, we apply the Peng’s Q(λ)-learning
(eq. (1)) with γ = 0.9, λ = 0.9, and a decreasing step size
parameter α = 0.7 exp(−0.002Neps). For exploring actions,
we use the Boltzmann policy selection described in section
IV-B with τ0 = 0.03 and δτ = 0.001 for the DCOB and
the WF-DCOB, τ0 = 0.1 and δτ = 0.001 for the wire-
fittings. These parameters and coefficients are chosen from
preliminary experiments.

A. Experimental Setup

The robot navigation task is exactly as described by
Yamaguchi et al. [2]. An omniwheel mobile robot can
move in any direction on a 2-dimensional plane (x1, x2),
x1, x2∈[−1, 1] (Fig. 2). The state of the robot can be
expressed as x = (x1, x2)>, and its control input ũ =
(∆x1, ∆x2)> is the state transition in a time step δt = 0.01.
In this environment, there is some wind that changes the
behavior of the robot in the direction of the arrows shown
in Fig. 2. There are also walls which the robot can not cross
but is allowed to move along. The objective of the navigation
task is to acquire a path with which the robot can move from
the start to the goal as shown in Fig. 2. If the agent can reach
the goal, 1 is given as a reward, and the episode is terminated.
See [2] for the detailed dynamics of the environment and the
design of the reward.

The ellipse of Fig. 2 denotes the 64 BFs of a NGnet. These
BFs are allocated on a 8× 8 grid with added random noise
to each center and covariance.

B. Action Set Configurations

The DCOB : We use the NGnet as a function approximator;
specifically, let Q(x, a) = θ>a φ(x). Note that since the
DCOB is a discrete action set, this function approximator
is linear, so it has a good convergence property [19]. We
begin RL from scratch, that is, let θa = 0 for all a.



In order to apply the DCOB, we let Cp, Cd, Ctrl , and
I as follows:

Cp(x) = x = (x1, x2)> (19)

Cd(x) = (0, 0)> (20)

Ctrl(x(t), qd(t + δt)) = qd(t + δt)− Cp(x(t)) (21)
I = {0.3δCp(x, µk)} (22)

where δCp(x, µk) is defined in eq. (11). The size of the
action set is |A| = |K||I| = 64.
The WF-DCOB : We let Cp, Cd, and Ctrl as defined for
the DCOB, and let the WF-DCOB’s parameters, Fn (see eq.
(13)) and IR as follows:

Fn = 1 (23)
IR = {(0.1, 0.5)} (24)

The size of the control wire set is |W| = |K||IR| = 64.
In the beginning of RL, we initialize the parameters Ui =
(gi, q

trg
i ) as described by eq. (16), and θi = 0 for all i ∈ W .

The Wire-fitting : We directly input the selected action
u(xn) into the robot, that is, ũ(t) = u(xn), where xn =
x(tn) and t = tn + ta, ta ∈ [0, TWF). TWF = 0.1[s]
denotes the interval of the action. We tested the size of wires
in {10, 20, 40}. In the beginning of RL, we initialize the
parameters Ui at random, and θi = 0 for all i ∈ W .

C. Results

Fig. 3 shows the resulting learning curves (the mean of
the return over 25 runs per episode). The DCOB and the
WF-DCOB are much faster than the normal wire-fitting. The
reason of slowness of the wire-fitting is regarded as the in-
stability described in section III-A, while the WF-DCOB can
overcome such problem. Furthermore, the learning curves of
the wire-fitting converge to a poor local maxima. This is
because some runs of the wire-fitting cannot reach the goal
caused by an improper parameter initialization. Meanwhile,
every run of the DCOB and the WF-DCOB can get to
the goal. This result is possible because the initial WF-
DCOB’s parameters decided from the centers of the BFs as
described in section III-D are properly distributed. Moreover,
the convergent values of the return of the WF-DCOBs are
slightly better than that of the DCOB (see the zoomed graph
of Fig. 3). This difference is caused from the step cost which
is basically proportional to the length of the path of the
robot. The reason of the higher return of the WF-DCOB is
considered as that by expanded to be able to learn continuous
actions, the WF-DCOB obtains a potential to learn higher
performance than that of the DCOB.

VI. EXPERIMENTAL COMPARISON ON MOTION
LEARNING OF MULTI-LINK ROBOT

Next, we compare the DCOB, the WF-DCOB, and the
wire-fitting in motion learning of a multi-link robot that has
higher state and action space dimensionality. We employ a
humanoid robot shown in Fig. 4, and engage it in crawl-
ing and jumping tasks. The humanoid’s configuration and
the task objectives are exactly as described by Yamaguchi

Fig. 3. Resulting learning curves of the robot navigation task. Each curve
shows the mean of the return over 25 runs per episode (log scale). WF-?
denotes the wire-fitting with |W| = ?.
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q4
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head
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Fig. 4. Humanoid robot whose DoF is constrained to five.

et al. [2]. The DoF of the robot is constrained to five as
shown in Fig. 4, where the state space X is 21-dimensional
and the control input space Ũ is 5-dimensional as defined as
follows:

x = (c0z, qw, qx, qy, qz, q1, q2, q3, q4, q5,

ċ0x, ċ0y, ċ0z, ωx, ωy, ωz, q̇1, q̇2, q̇3, q̇4, q̇5)> (25)

ũ = (ũ1, ũ2, ũ3, ũ4, ũ5)> (26)

where (c0x, c0y, c0z) denotes the position of the center-of-
mass of the body link, (qw, qx, qy, qz) denotes the rotation
of the body link in quaternion, (ωx, ωy, ωz) denotes the
rotational velocity of the body link, qj (j=1, .., 5) denotes
the joint angles, ũj (j=1, .., 5) denotes the joint torques.
The reason for the absence of c0x and c0y from the state
x in eq. (25) is that the agent should be able to learn the
following tasks (crawling and jumping tasks) without them.
The joint torque is limited to |ũj | 6 ũmax = 2.06[Nm] for
j = 1, .., 5. The following experiments are performed on a
dynamics simulator, ODE2, with a time step δt = 0.2[ms].

As an RL algorithm, we also use Peng’s Q(λ)-learning
(eq. (1)) with γ = 0.9, λ = 0.9, and a decreasing step size
parameter α = α0 exp(−δαNeps). For exploring actions, we
use the Boltzmann policy selection described in section IV-B.

2Open Dynamics Engine: http://www.ode.org/



The parameters, α0, δα, τ0, δτ , are chosen from preliminary
experiments for each action set and each task.

A. Basis Functions

Allocating some BFs independently on each dimension of
the state space, exponential number of the BFs are required;
e.g. 321 ≈ 1010 BFs for using only 3 BFs per dimension. In
order to deal with this unrealistic problem, we generate the
BFs before the RL process so that the function approximator
can estimate the dynamics of the robot. This method is also
used in [2].

B. Action Set Configurations

The DCOB : We also use the NGnet as a function approx-
imator; Q(x, a) = θ>a φ(x). We begin RL from scratch, i.e.
θa = 0 for all a.

In order to apply the DCOB, let Cp, Cd, Ctrl , and I as
follows:

Cp(x) = (q1, q2, q3, q4, q5)> (27)

Cd(x) = (q̇1, q̇2, q̇3, q̇4, q̇5)> (28)

Ctrl(x(t), qd(t + δt))

= Kp{qd(t+δt)− Cp(x(t))} −KdCd(x(t)) (29)
I = {g`δCp(x, µk) | g` = 0.075, 0.1, 0.2} (30)

where Kp = 5.0, Kd = 1.6, and δCp(x, µk) is defined in
eq. (11). The size of the action set is |A| = |K||I| = 606.
The WF-DCOB : We let Cp, Cd, and Ctrl as defined for
the DCOB, and let the WF-DCOB’s parameters, Fn (see eq.
(13)) and IR as follows:

Fn = 1 (31)
IR = {(0.05, 0.1), (0.1, 0.2), (0.2, 0.3)} (32)

The size of the control wire set is |W| = |K||IR| = 606.
In the beginning of RL, we initialize the parameters Ui =
(gi, q

trg
i ) as described eq. (16), and θi = 0 for all i ∈ W .

The Wire-fitting : We calculate the control input ũ from the
selected action u(xn) as follows:

qd(t) , Cp(x(t)) + u(xn) (33)

ũ(t) = Kp{qd(t)− Cp(x(t))} −KdCd(x(t)) (34)

where t = tn + ta, ta ∈ [0, TWF). TWF = 0.1[s] denotes
the interval of the action. We tested the size of wires
in {50, 100}. In the beginning of RL, we initialize the
parameters Ui at random, and θi = 0 for all i ∈ W .

C. Crawling and Jumping Tasks

We apply the RL to acquire a crawling and a jumping
motions. The objective of the crawling is to move forward
along the x-axis as far as possible. The reward is mainly
given for the velocity of the center-of-mass of the body link.
The objective of the jumping is to jump as high as possible
without falling down. The reward is basically proportional to
the height reached by the head link. See [2] for the detailed
design of the reward.

Fig. 5(a) and 5(b) show the resulting learning curves (the
mean of the return over 10 runs per episode) of the crawling

(a) Resulting learning curves of the crawling task.

(b) Resulting learning curves of the jumping task.

Fig. 5. Resulting learning curves of the crawling and the jumping tasks.
Each curve shows the mean of the return over 10 runs per episode. WF-?
denotes the wire-fitting with |W| = ?.

and jumping respectively. In each graph, the tendency of the
learning curves is quite similar. The learning curves of the
wire-fitting converge to poor local maxima than the ones
of the DCOB and the WF-DCOB. This is considered to
be caused by an improper parameter initialization and the
instability of the wire-fitting as described in section III-A.
On the other hand, the WF-DCOB is the same as, or slightly
worse than the DCOB. One possible reason is that the WF-
DCOB has a potential to obtain a better behavior than the
DCOB as described in section III-C, but the difference is
small. In fact, because of the nonlinearity of the wire-fitting,
the WF-DCOB performs slightly worse than the DCOB.
The nonlinearity makes the update of the Q(λ)-learning
(eq. (1)) unstable. In addition to this, we are applying the
replacing trace [20] for the DCOB that makes the RL with
the eligibility trace stable, however it is difficult to apply the
replacing trace to the WF-DCOB and the wire-fitting because
of the nonlinearity. Thus, the WF-DCOB cannot obtain a
better performance than the DCOB. In other words, the
discretization of the DCOB is enough fine to learn continuous
actions.

VII. RELATION TO OTHER WORKS

Converting the control input space Ũ to a new action space
U is often used in the robotics applications of RL. A typical
way is to prepare a PD controller and learn the target position
or angles by RL [7]. Using central pattern generators (CPGs)



as a controller and learning its parameters by RL is useful
to learn rhythmic movements, such as walking [8]. However,
using CPGs may restrict the availability of the robot, while
the WF-DCOB keeps the availability as can be expected from
the empirical results in the various domains mentioned in
section V and VI.

Ijspeert et al. proposed to use nonlinear dynamic motor
primitives for motion learning in higher dimensional state-
action space [21]. Peters et al. optimized the parameters of
the motor primitives by RL [9]. This sophisticated method
is very similar to ours. However, their applications are
performed under a learning-by-demonstration framework,
while ours are learned from scratch. If we apply their method
without imitations, that is, learning from scratch, at least
the parameter initialization problem may occur the same
as the wire-fitting. Similarly, Miyamoto et al. proposed a
reinforcement learning with via-point representation [22], but
this method may also suffer from the parameter initialization
problem in higher dimensional domains.

VIII. DISCUSSION AND FUTURE WORK

In this paper, we expand the DCOB to the WF-DCOB
in order to learn continuous actions with the wire-fitting.
Constraints to the parameters reduce the instability of the
wire-fitting, caused by changing the parameters of actions.
Furthermore, a proper decision method to initialize the
parameters is described.

The simulation results demonstrate that the WF-DCOB
outperforms the wire-fitting. However, the resulting perfor-
mance of the WF-DCOB is the same as, or slightly inferior to
that of the DCOB. As discussed in section VI-C, the potential
advantage of the WF-DCOB may not be actually distinct. In
fact, the nonlinearity of the wire-fitting makes the WF-DCOB
worse than the DCOB. In order to investigate the detailed
reason, we will expand the DCOB to learn in a continuous
action space with more stable RL techniques than the wire-
fitting, such as the Natural Actor Critic [9], in future work.

REFERENCES

[1] L. C. Baird and A. H. Klopf, “Reinforcement learning with
high-dimensional, continuous actions,” Wright Laboratory, Wright-
Patterson Air Force Base, Tech. Rep. WL-TR-93-1147, 1993.

[2] A. Yamaguchi, J. Takamatsu, and T. Ogasawara, “Constructing action
set from basis functions for reinforcement learning of robot control,”
in the IEEE Internactional Conference in Robotics and Automation
(ICRA’09), 2009, pp. 2525–2532.

[3] H. Kimura, T. Yamashita, and S. Kobayashi, “Reinforcement learning
of walking behavior for a four-legged robot,” in Proceedings of the
40th IEEE Conference on Decision and Control, 2001.

[4] T. Kondo and K. Ito, “A reinforcement learning with evolutionary state
recruitment strategy for autonomous mobile robots control,” Robotics
and Autonomous Systems, vol. 46, no. 2, pp. 111–124, 2004.

[5] C. Gaskett, L. Fletcher, and A. Zelinsky, “Reinforcement learning
for a vision based mobile robot,” in the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS’00), 2000.
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