
社団法人 電子情報通信学会
THE INSTITUTE OF ELECTRONICS,
INFORMATION AND COMMUNICATION ENGINEERS

信学技報
TECHNICAL REPORT OF IEICE.

Composition of Feature Space and State Space Dynamics Models

for Model-based Reinforcement Learning

Akihiko YAMAGUCHI†, Jun TAKAMATSU†, and Tsukasa OGASAWARA†

† Graduate School of Information Science, Nara Institute of Science and Technology
8916-5, Takayama, Ikoma, Nara 630-0192, JAPAN
E-mail: †{akihiko-y,j-taka,ogasawar}@is.naist.jp

Abstract Learning a dynamics model and a reward model during reinforcement learning is a useful way, since

the agent can also update its value function by using the models. In this paper, we propose a general dynamics

model that is a composition of the feature space dynamics model and the state space dynamics model. This way

enables to obtain a good generalization from a small number of samples because of the linearity of the state space

dynamics, while it does not lose the accuracy. We demonstrate the simulation comparison of some dynamics models

used together with a Dyna algorithm.

Key words Model-based reinforcement learning, Dyna-style planning, prioritized sweeping, dynamics model.

1. Introduction

A reinforcement learning (RL) architecture, named Dyna,

where the model-free RL and the model-based RL are com-

bined is proposed by Sutton [1]. The convergence of the Dyna

with a linear function approximator is proven by Sutton et

al. [2]. The setting of the problem in the Dyna is the same

as RL, that is, to acquire an optimal decision making rule

(policy) with an incompletely known dynamics of the envi-

ronment in an on-line manner. In the Dyna architecture,

a model-free RL, learning models, and the model-based RL

(planning, in other words) are performed simultaneously. A

key idea in the Dyna architecture is that if the model is

learned, samples needed to train a value function can be

withdrawn from the model. This makes the learning effi-

cient. Although the Dyna architecture is a general method

where a model-based and a model-free RL are combined,

there are some similar approaches that utilize a model [3]～

[5].

One important problem in the Dyna architecture or the

other model-based RLs is how to make a precise dynam-

ics model. In this paper, we develop a composite dynamics

model of the feature space dynamics and the state space dy-

namics. Here, the feature means the output of the basis func-

tions (we are assuming to be local models) that are used to

approximate a value function. Usually, the dynamics model

is represented by a transition matrix of the feature. This

dynamics model in the feature space is accurate, but has a

poor generalization. Instead, the dynamics model in the state

space may obtain a good generalization since in many practi-

��������	
��
�

�
����
	����

����

������

�����
���������

�
����

�
����

��
��
��

�
����	
��
�

�
����

���������
�
��

����

����

������

�����
���������

�
����

�
����

��
��
��

��������	
��
�

�
����	
��
�

�
����

���������
�
��

����

����
	����

�
����
	����

����

Fig. 1 The system architecture where the Dyna is utilized

(above). In this paper, we develop a composite dynamics

model of the feature space dynamics and the state space

dynamics, named MixFS (below).

cal applications, the dynamics of the environment (including

the robot) is nearly linear in the state space. Typical exam-

ples are navigation tasks and robotic manipulations. Thus,

our proposed composite dynamics model, which we call the

MixFS dynamics model, can exploit the advantages of both

dynamics models (Fig. 1).

— 1 —

Our main contributions are (1) to combine the two dy-

namics models and make it work with the Dyna algorithms,

and (2) to derive an on-line learning method of the devel-

oped model. In a simulation, we compare the MixFS dy-

namics model to a conventional linear dynamics model of a

feature space in an environment that has a simple dynamics.

The result of learning dynamics model demonstrates that the

MixFS dynamics model can obtain an accurate model from

a small number of samples, that is, it has a good generaliza-

tion. Moreover, it can acquire a high accurate model from

a large number of samples. We also compared these two

models used with a Dyna algorithm in a navigation task on

a 2-dimensional continuous maze. The result demonstrates

that the Dyna with the MixFS is much faster than that with

the conventional dynamics model.

2. Dyna Architecture with Linear Func-
tion Approximator

2. 1 Reinforcement Learning with Linear Function

Approximator

The purpose of RL is that a system (agent) whose in-

put is a state, xn ∈ X , and a reward, Rn ∈ R, and

whose output is an action, an ∈ A, acquires the policy,

π(xn) : X → A, that maximizes the expected discounted

return, E
ˆ

P∞
k=1 γk−1Rn+k

˜

, where n ∈ N = {0, 1, . . . } de-

notes the time step and γ ∈ [0, 1) denotes a discount factor.

In some RL methods, such as Q-learning [6] and Sarsa [7],

an action value function, Q(x, a) : X ×A → R, is learned to

represent the expected discounted return by taking an action

a from a state x. Then, the optimal action rule is obtained

from the greedy policy π(x) = arg maxa Q(x, a).

If X or A are continuous, a function approximator is used.

Here, we assume to use a linear function approximator over

a continuous X and a discrete A. An action value function

is represented as follows:

Q(x, a) = θ>
a φ(x) (1)

φ(x) = (φ1(x), . . . , φ|K|(x))> (2)

where θa and φ(x) denote a parameter vector and a feature

vector respectively. K = {φk|k = 1, 2, ..} denotes predeter-

mined basis functions. In this paper, we use a Normalized

Gaussian Network (NGnet) that is often used in RL appli-

cations [8], [9]. A basis function of the NGnet is defined as

follows:

φk(x) =
G(x; µk, Σk)

P

k′ G(x; µk′ , Σk′)
(3)

where G(x; µ, Σ) denotes a Gaussian with mean µ and co-

variance matrix Σ.

2. 2 Linear Dyna with ‘MG’ Prioritized Sweeping

McMahan and Gordon proposed the Improved Prioritized

Sweeping algorithm that is a fast planning algorithm in a

Markov Decision Process (MDP) [10]. Sutton et al. called

the algorithm MG prioritized sweeping, and developed a

Dyna using it, Dyna-MG, which was faster than Dyna al-

gorithms with the other prioritized sweeping methods [2].

Thus, we use the Dyna-MG whose algorithm is given as fol-

lows:

Algorithm 1: Dyna-MG

Input:a state set X (continuous), an action set A (discrete)

basis functions φ : X → R|K|×1

Output:a coefficient vector θa for which Q̃(x, a) ≈ θ>a φ(x)

1: Initialize: θa, Fa, ba

2: for Neps = 1, 2, . . . do /∗ Neps: episode ∗/

3: n← 1 /∗ time index ∗/

4: Choose a start state xn ∈ X
5: φn ← φ(xn)

6: while not is-end-of-episode(xn) do

7: Carry out an action an according to current policy,

producing a reward Rn and next state xn+1

8: φn+1 ← φ(xn+1)

9: Update by Q(0)-learning:

10: δn ← Rn + γ maxa θ>a φn+1 − θ>an
φn /∗ TD error ∗/

11: θan ← θan + αφnδn

12: Update models:

13: Fan ← Fan + α(φn+1 − Fanφn)φ>
n

14: ban ← ban + α(Rn − b>an
φn)φn

15: for i = 1, . . . , |K| do
16: if φn[i] > Th1 then

17: Put i on the PQueue with priority |δnφn[i]|
18: for 1, . . . , Npln do

19: if PQueue is empty then break

20: i← PQueue.pop()

21: for all (j, a) ∈ pred(i) do

22: δ ← ba[j] + γ maxa′ θ>
a′ (Faej)− θa[j]

23: θa[j] ← θa[j] + αδ

24: Put j on the PQueue with priority |δFa[i,j]|
25: n← n + 1

Here, {Fa, ba|a ∈ A} denotes the parameters of the dynamics

model and the reward model used as follows:

φ′ ≈ Faφ(x) (4)

R ≈ b>a φ(x). (5)

Npln∈N denotes a planning depth (given constant), PQueue

denotes a priority queue whose pop() operator removes and

returns the queue element of the highest priority, Th1 ∈ [0, 1]

is a threshold that decides to include the PQueue, ej ∈
R|K|×1 denotes a vector whose j-th element is 1 and the rest

are 0, �[i] denotes the i-th element of the vector �, �[i,j] de-

notes the (i, j)-th element of the matrix �. pred(i) denotes

the set of all pairs of a feature index and an action (j, a) such

that taking action a from the feature index j has a positive

chance to reach the feature index i. In this paper, we define

the {(j, a)} = pred(i) as whole pairs that satisfy all of the

following conditions:

— 2 —

j ∈ {1, . . . , |K|}, i |= j, (6)

a = arg max
a′

Fa′[i,j], Fa[i,j] > Th2 (7)

where Th2 ∈ [0, 1] denotes a threshold that decides to ex-

ecute a planning of the specified (j, a, i). Note that Fa[i,j]

denotes the transition probability from the feature index j

to i by the action a.

3. Composition of the Feature Space and
the State Space Dynamics Models

As mentioned in section 1, the dynamics model of the fea-

ture space is accurate but has a poor generalization, while

the dynamics model of the state space has a good general-

ization. Thus, we develop a composite dynamics model of

the feature space dynamics and the state space dynamics

to exploit the both advantages. We call this model MixFS

dynamics model.

3. 1 MixFS Dynamics Model

To use a dynamics model in the prioritized sweeping, a

transition probability from the feature index i to j by the

action a should be calculated. Hence, we define the MixFS

dynamics model as

φ′ ≈ f̃a(φ(x), x) (8)

where f̃a denotes a general function approximator that esti-

mates the succeeding feature vector φ′ from the state x by

the action a. This model is learned during the Dyna. Then

we compute the feature transition matrix; for all feature in-

dex pairs i, j ∈ {1, . . . , |K|} and action a ∈ A,

Fa[j,i] ← f̃a(ei, µi)[j] (9)

where ei ∈ R|K|×1 denotes a vector whose j-th element is 1

and the rest are 0. The obtained feature transition matrix

is directly used in the prioritized sweeping part of the Dyna

algorithm.

As the function approximator f̃a, we choose simple linear

models for two dynamics models, and combine them linearly.

Thus, f̃a is defined by

f̃a(φ(x), x) = δFaφ(x) + φ(x + δx̃a(x)) (10)

δx̃a(x) = Waφ(x) + da (11)

where δFa ∈ R|K|×|K|, Wa ∈ Rdim(X)×|K|, da ∈ Rdim(X)×1 are

model parameters. For further understanding, let us think

about a model, f̃ ′
a(φ(x), x) = φ(x+δx̃a(x)). Here, x+δx̃a(x)

is a linear state space dynamics model, that is, it can esti-

mate the succeeding state from the state x by the action a.

Thus, the model f̃ ′
a(φ(x), x) estimates the succeeding feature

vector from x by a. The MixFS dynamics model eq. (10) is

now clearly understood as a composite dynamics model.

3. 2 Learning MixFS Dynamics Model

Next, we derive an on-line learning algorithm for the

model parameters of the MixFS dynamics model, with which

the Update models part of the Dyna algorithm is replaced.

Specifically, the learning algorithm updates δFa, Wa, da so

that f̃a(φ(x), x) can estimate the succeeding feature vector

φ′ from the observation data xn, φn, xn+1, φn+1. Simply, we

use an on-line gradient descent algorithm [11].

However, it is difficult to update Wa and da in a straight-

forward way, since these parameters are enveloped by the

basis functions φ(x) that makes it complex to calculate the

gradient. To overcome this difficulty, we separate the learn-

ing problem into two steps. First, the model parameters of

the state space dynamics model Wa, da are updated so that

x+ δx̃a(x) can estimate the succeeding state x′. Second, the

model parameter of the feature space dynamics model δFa

is updated so that f̃a(φ(x), x) can estimate the succeeding

feature vector φ′.

Thus, the model parameters of MixFS dynamics model are

updated through the following algorithm:

Algorithm 2: Update MixFS dynamics model parameters

Input:current and succeeding state x, x′ ∈ X , action a ∈ A,

basis functions φ : X → R|K|×1, step size α,

current model parameters δFa, Wa, da

Output:updated model parameters δF ′
a, W ′

a, d′a

1: x̃′ ← x + Waφ(x) + da

2: φ̃′ ← δFaφ(x) + φ(x̃′)

3: W ′
a ←Wa + α(x′ − x̃′)φ(x)>

4: d′a ← da + α(x′ − x̃′)

5: δF ′
a ← δFa + α(φ(x′)− φ̃′)φ(x)>

3. 3 Computational Techniques

3. 3. 1 Fast Computation

After updating the model parameters of the MixFS, the

feature transition matrix Fa should be computed by eq. (9),

but it takes some computational cost. Since the feature tran-

sition matrix is required only when the planning is executed

in the Dyna-MG, i.e. PQueue |= ∅, the feature transition

matrix have to be calculated only when it is demanded. To

do this, flaga ∈ {true, false} is prepared for each action

a ∈ A to judge whether the Fa is already calculated for the

latest model parameters or not.

3. 3. 2 Constraint for Numerical Stability

The feature transition matrix Fa is assumed to be encoding

transition probabilities of the MDP. However, due to the es-

timation error, Fa sometimes takes an irregular value, which

makes the planning unstable. Thus, we constrain the Fa as

follows:

— 3 —

for all i, j ∈ {1, . . . , |K|}:

if Fa[j,i] < 0 then: Fa[j,i] ← 0

if Fa[j,i] > 1 then: Fa[j,i] ← 1

for all i ∈ {1, . . . , |K|}:

if
X

j′

Fa[j′,i] > 1 then:

for all j ∈ {1, . . . , |K|}: Fa[j,i] ←
Fa[j,i]

P

j′ Fa[j′,i]

The first part constrains the range of the Fa[j,i] to [0, 1]

since it represents a transition probability in the MDP. The

second part constrains the sum of the transition probability

w.r.t. the succeeding feature index j′ from i by an action a,

which should be 1.

4. Experimental Comparison of Dynam-
ics Models

First, we compare the approximation accuracy of the two

dynamics models in an environment of simple dynamics. One

model is a traditional linear dynamics model of the feature

space used in the Dyna-MG mentioned in section 2. 2, which

we refer as the Simple dynamics model. And the other is the

proposed MixFS dynamics model.

We employ a robot that has 1-dimensional state space

X ⊂ R and only 1-element action set A = {a}. The dy-

namics of the robot is defined as

x′ = fa(x) = max(min(1.2x + 0.5, 2.0),−1) (12)

where x′ denotes the succeeding state from the state x by

the action a. The experiment is performed as follows: (1)

repeat Nsmpl times: {generate x from uniform random dis-

tribution [−2.5, 2.5], compute x′ = fa(x), and train the

models in an on-line manner}, (2) evaluate the RMS with

(x, φ′) ∈ {(xn, φ′
n)|xn=−2.5,−2.48, . . . , 2.5; φ′

n=φ(fa(xn)}).
We allocated 5 NGnet in X whose parameters are {(µk, Σk)|
µk=−2,−1, 0, 1, 2;Σk= 1

9
}. We set α = 0.1 as the step size

parameter, and tested Nsmpl in {10, 20, . . . , 2000}.
Fig. 2 shows the approximation accuracy of each dynamics

models (the mean of the RMS over 10 runs is plotted per

Nsmpl). The MixFS dynamics model has higher accuracy

both in small Nsmpl and large Nsmpl than the Simple dynam-

ics model. The possible reason is as follows. The dynamics of

the robot is nearly linear in many regions of the state space,

so the linear component of the state space dynamics of the

MixFS, da, leads to good generalization from small samples.

On the other hand, the composition of two dynamics mod-

els enhances the approximation capability, thus the MixFS

dynamics model also obtains a higher accuracy from a large

number of samples than the Simple one.

Fig. 2 Estimation errors of the two dynamics models, MixFS and

Simple, per number of samples Nsmpl in 1-dimensional en-

vironment. The MixFS dynamics model always shows bet-

ter estimation accuracy than the Simple dynamics model.

Fig. 3 The map of the robot navigation task. The state of the

robot has 2-dimensional continuous value, (x1, x2) ∈ Xpl,

and the possible actions are A = {up, left , down, right}.

5. Experimental Comparison of Dyna
Performance

Next, we evaluate the dynamics models with the Dyna-

MG algorithm in a robot navigation task on a 2-dimensional

plane.

5. 1 Experimental Setup

We employ an omniwheel mobile robot that can move in

any direction on a 2-dimensional plane (x1, x2) ∈ Xpl =

{(x1, x2)|x1∈[−1, 1], x2∈[−1, 1]} (Fig. 3). The state of the

robot can be expressed as x = (x1, x2)
>, and the possible ac-

tions are A = {up, left , down, right}. There are walls which

the robot can not cross.

The objective of the navigation task is to acquire a path

with which the robot can move from the start to the goal

shown in Fig. 3. If the succeeding state x′ is at the goal, 1

is given as the reward; if x′ /∈ Xpl, −0.5 is given; −0.003

is given for each action. Each episode begins with the start

state x(0) = xs, and ends if the robot has reached the goal,

gone outside (x′ /∈ Xpl), or t > 100.

We use NGnet with 64 BFs allocated as shown in Fig. 3 to

— 4 —

Fig. 4 Resulted learning curves of the robot navigation task.

Each curve shows the mean of the return per episode

over 25 runs. The DynaMG (Simple) denotes the Dyna-

MG with the Simple dynamics model, and The DynaMG

(MixFS) denotes the Dyna-MG with the MixFS dynamics

model.

approximate the action value function. These BFs are allo-

cated on a 8×8 grid with added random noise to each center

and covariance.

The configuration of the Dyna-MG is γ = 0.9, α = 0.1,

Npln = 5, Th1 = 0.2, Th1 = 0.3. For exploring actions,

we use the Boltzmann policy selection with the tempera-

ture τ = 0.1. These parameters and coefficients are chosen

through preliminary experiments. We compared the Q(0)-

learning (let Npln = 0 in the Dyna-MG algorithm), the Dyna-

MG with the MixFS dynamics model, and the Dyna-MG

with the Simple dynamics model (same as Algorithm 1).

5. 2 Result of Dyna-MG

Fig. 4 shows the learning curves (the mean of the return

over 25 runs is plotted per episode) resulted from the three

algorithms. The Dyna-MG with the MixFS is the fastest

among the three. The Dyna-MG with the Simple dynam-

ics model is slightly faster than the Q(0)-learning. This re-

sult is considered to be an effect of the planning. Moreover,

the MixFS dynamics model can obtain a more accurate es-

timation than the Simple one even from a small number of

samples. Thus, the planning in the Dyna-MG becomes more

precise which makes the learning faster.

5. 3 Embedding Reward Sources

If the state and the reward of the goal is known, we can

embed it into the reward model as a prior knowledge. Dyna

can exploit such kind of information by planning. A gen-

eral way to embed such kind of information, i.e. the reward

sources, into the reward model is formulated and solved as

follows:

For given reward sources {(xi, Ri)|i = 1, . . . , Nrsrc}, esti-

mate ba, a ∈ A to satisfies

2

6

6

6

4

R1

.

..

RNrsrc

3

7

7

7

5

=
h

φ(x1) · · · φ(xNrsrc)
i>

ba. (13)

The solution is

ba =
h

φ(x1) · · · φ(xNrsrc)
i>]

2

6

6

6

4

R1

..

.

RNrsrc

3

7

7

7

5

(14)

where �] denotes the pseudo-inverse of the matrix �.

Note that the reward model obtained by this method is

slightly different from the correct one since the goal reward

is given when the succeeding state is the goal state, but the

above reward model says that the goal reward is given for any

action from the goal state. The agent can not resolve this

problem since initially it does not know about the dynamics.

But, this problem is addressed through learning.

Again in the same navigation task, we compared the three

algorithms, Q(0)-learning, the Dyna-MG with the MixFS dy-

namics model, and the Dyna-MG with the Simple dynamics

model. The Q(0)-learning is exactly the same as the pre-

vious one. In the other two methods, the reward model is

initialized by the above method where the goal state and the

goal reward are given as reward sources.

Fig. 5 shows the resulted learning curves (the mean of the

return over 25 runs is plotted per episode). Again, the Dyna-

MG with the MixFS dynamics model is the fastest, and the

Dyna-MG with the Simple dynamics model is faster than

the Q(0)-learning. Here, it is natural that the fastest is the

Dyna-MG with the MixFS dynamics model which is more

precise than the Simple one. Moreover, these two Dyna-

MGs are faster than that in the previous experiment (see

Fig. 4). This is possible because the planning of the Dyna-

MG can utilize the reward sources information embedded

into the reward model by the above method, which makes

the Dyna-MG faster.

6. Conclusions

In this paper, we develop a composite dynamics model of

the feature space dynamics and the state space dynamics,

which is named MixFS dynamics model. The MixFS can

exploit the advantages of both dynamics models, that is, the

generalization of the state space dynamics model and the ac-

curacy of the feature space dynamics model. We contribute

to combine the two dynamics models and make it work with

the Dyna algorithm, and to derive an on-line learning method

of the developed model.

The simulation result demonstrates that the MixFS can

exploit the advantages of both dynamics models as we have

expected. Concretely, the MixFS can estimate the dynamics

more precisely both from a small number and large number

— 5 —

Fig. 5 Resulted learning curves of the robot navigation task.

Each curve shows the mean of the return per episode

over 25 runs. The DynaMG (Simple) denotes the Dyna-

MG with the Simple dynamics model, and The DynaMG

(MixFS) denotes the Dyna-MG with the MixFS dynamics

model. The reward models of these Dyna-MG algorithms

are initialized so that they approximate the goal reward.

The Q(0)-learning is exactly the same as the Fig. 4.

of samples than the conventional linear dynamics model of a

feature space. As a result, the Dyna-MG with the MixFS is

faster than that with the conventional dynamics model.

Bibliography

[1] R.S. Sutton, “Integrated architectures for learning, plan-

ning, and reacting based on approximating dynamic pro-

gramming,” In Proceedings of the Seventh International

Conference on Machine Learning, pp.216–224, Morgan

Kaufmann, 1990.

[2] R.S. Sutton, C. Szepesvári, A. Geramifard, and M. Bowl-

ing, “Dyna-style planning with linear function approxima-

tion and prioritized sweeping,” Proceedings of the 24th Con-

ference on Uncertainty in Artificial Intelligence, pp.528–536,

2008.

[3] A. Rottmann and W. Burgard, “Adaptive autonomous con-

trol using online value iteration with gaussian processes,”

the IEEE Internactional Conference in Robotics and Au-

tomation (ICRA’09), pp.2106–2111, 2009.

[4] A.M. Farahmand, A. Shademan, M. Jägersand, and C.

Szepesvári, “Model-based and model-free reinforcement

learning for visual servoing,” the IEEE Internactional Con-

ference in Robotics and Automation (ICRA’09), pp.2917–

2924, Kobe, Japan, May 2009.

[5] J.-J. Park, J.-H. Kim, and J.-B. Song, “Path planning for

a robot manipulator based on probabilistic roadmap and

reinforcement learning,” International Journal of Control,

Automation, and Systems, vol.5, no.6, pp.674–680, 2007.

[6] C.J.C.H. Watkins, “Learning from delayed rewards,” PhD

thesis, Cambridge University, 1989.

[7] G.A. Rummery and M. Niranjan, “On-line Q-learning us-

ing connectionist systems,” Technical Report CUED/F-

INFENG/TR 166, Cambridge University Engineering De-

partment, 1994. citeseer.ist.psu.edu/rummery94line.html

[8] T. Kondo and K. Ito, “A reinforcement learning with evo-

lutionary state recruitment strategy for autonomous mobile

robots control,” Robotics and Autonomous Systems, vol.46,

no.2, pp.111–124, 2004.

[9] J. Morimoto and K. Doya, “Reinforcement learning of

dynamic motor sequence: Learning to stand up,” the

IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS’98), pp.1721–1726, 1998.

[10] H.B. McMahan and G.J. Gordon, “Generalizing dijkstra’s
algorithm and gaussian elimination for solving mdps,” Tech-

nical Report CMU-CS-05-127, Carnegie Mellon University,

2005.

[11] C.M. Bishop, Pattern recognition and machine learning,

Springer, 2006.

— 6 —

