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Abstract— Continuous action sets are used in many rein-
forcement learning (RL) applications in robot control since the
control input is continuous. However, discrete action sets also
have the advantages of ease of implementation and compati-
bility with some sophisticated RL methods, such as the Dyna
[1]. However, one of the problem is the absence of general
principles on designing a discrete action set for robot control
in higher dimensional input space. In this paper, we propose
to construct a discrete action set given a set of basis functions
(BFs). We designed the action set so that the size of the set is
proportional to the number of the BFs. This method can exploit
the function approximator’s nature, that is, in practical RL
applications, the number of BFs does not increase exponentially
with the dimension of the state space (e.g. [2]). Thus, the size
of the proposed action set does not increase exponentially with
the dimension of the input space. We apply an RL with the
proposed action set to a robot navigation task and a crawling
and a jumping tasks. The simulation results demonstrate that
the proposed action set has the advantages of improved learning
speed, and better ability to acquire performance, compared to
a conventional discrete action set.

Index Terms— Reinforcement learning, discrete action set,
motion learning, crawling, jumping.

I. INTRODUCTION

Many highly functional robots, such as humanoid robots,
can walk, jump, and perform other motions, but, prepro-
grammed ones only. Essential for the next generation of
robots is the function to acquire a motion when given an
objective. Reinforcement Learning (RL) is one of the tech-
nologies that realizes this function, and it has been applied to
robot control [2]∼[11]. However, it is still a difficult problem
to deal with large state and action spaces. In this paper, we
focus on the design of action set A.

In most robot control problems, the input space U of the
robot is continuous. Therefore, A is designed to be continu-
ous in many robotics applications of RL. A typical method
is a kind of Gaussian policy [3], [4]. Some researchers
use a function approximator, such as Normalized Gaussian
Network (NGnet) [12], to represent and learn continuous
actions [2], [5]. Alternative methods are wire-fitting [13], [6]
that enables to calculate an arg max operation quickly, and
the B-Spline function approximator [7], [14].

In contrast, a discrete action set is also often used [8],
[9], [10], [11], because of ease of implementation. Moreover,
a discrete action set is compatible with some hierarchical
architectures [9], multi-module learning systems [8], and

the Dyna architecture [1]. However, there are few general
principles on the design of an action set for robot control
of higher dimensional input space. The problem of the
conventional design is the exponential increase of the size
of the action set with the dimension of the input space. For
instance, a “Grid Action Set” mentioned in section VI-C has
this problem.

Therefore, we intend to construct a compact discrete action
set for robot control applications of RL. Concretely, we
propose to construct an action set given a set of basis
functions that have a center in the state space as a parameter.
We design an action as a trajectory calculated from the
current state and a center of a basis function. In this case,
the size of our action set is the same as, or a few times
larger than the number of the basis functions. In practical
applications, such as motion learning of multi-link robots, the
number of the basis functions used to approximate a value
function does not increase exponentially with the dimension
of the state space [2]. The proposed action set can exploit this
nature by constructing it given the basis functions. We call
the proposed action set DCOB, which stands for Directed to
a Center Of a Basis function.

Miyamoto et al. proposed a reinforcement learning with
via-point representation [15]. This method is similar to the
proposed action set in generating a reference trajectory. In
contrast, their method is a continuous action and does not use
basis functions like our method. Yamaguchi et al. proposed
to construct an action set given a set of basis functions
[16]. However there are two problems: (1) their method does
not consider carefully about the boundary conditions of the
trajectory, which strongly affects the Markov property of the
task as mentioned in section IV, and (2) a constructed action
is too long to acquire a fine behavior since they directly use
the trajectory calculated from the current state and the center
of a basis function. The proposed method in this paper solves
these problems as described in section III.

II. REINFORCEMENT LEARNING WITH BASIS FUNCTIONS

First, we introduce RL with a function approximator.
The purpose of RL is that a system (agent) whose input
is a state, xn ∈ X , and a reward, Rn ∈ R, and whose
output is an action, an ∈ A, acquires the policy, π(xn) :
X → A, that maximizes the expected discounted return,
E

[∑∞
k=1 γk−1Rn+k

]
, where n ∈ N = {0, 1, . . . } denotes



the time step and γ ∈ [0, 1) denotes a discount factor. In
some RL methods, such as Q-learning [17] and Sarsa [18],
an action value function, Q(x, a) : X ×A → R, is learned to
represent the expected discounted return by taking an action
a from a state x. Then, the optimal action rule is obtained
from the greedy policy π(x) = arg maxa Q(x, a).

If X or A are continuous, a function approximator is used.
Here, we assume to use a linear function approximator over
a continuous X and a discrete A. An action value function
is represented as follows:

Q(x, a) = θ>a φ(x) (1)

φ(x) = (φ1(x), . . . , φ|K|(x))> (2)

where θa and φ(x) denote a parameter vector and a feature
vector respectively. K = {φk|k = 1, 2, ..} denotes predeter-
mined basis functions. In this paper, we use a Normalized
Gaussian Network (NGnet) that is often used in RL appli-
cations [5], [2]. A basis function of the NGnet is defined as
follows:

φk(x) =
G(x;µk, Σk)∑
k′ G(x; µk′ ,Σk′)

(3)

where G(x; µ,Σ) denotes a Gaussian with mean µ and
covariance matrix Σ.

III. BASIS FUNCTION BASED ACTION CONSTRUCTION

As mentioned in section I, we propose to construct an
action set given a set of basis functions (BFs) to relax the
exponential increase problem of an action set. To accomplish
this, we assume the following:

(1) Each BF k∈K has a fixed center µk∈X in the state
space.
(2) A space in which a trajectory is defined is given as
Q (e.g. a joint angle space). A function that extracts
q∈Q from a state x∈X is given as q = Cp(x) : X →
Q. A function that extracts the derivative of q∈Q (e.g.
joint angular velocities) from a state x∈X is given as
q̇ = Cd(x). Moreover, a function to follow the designed
trajectory qd(t), that is, calculate a control input u∈U
(e.g. torques) from the trajectory is given as u(t) =
Ctrl(x(t), qd(t + δt)), such as a PD controller. Here, δt
denotes a time step size to generate the trajectory.

Obviously a basis function of the NGnet defined by eq. (3)
satisfies (1), however, note that the proposed method is not
restricted to the NGnet as mentioned in section VII.

An action of the proposed action set, DCOB, directed to
a center of a BF, is generated through the following three
steps (see Fig. 1):

At a time step n ∈ N, a current time tn ∈ R,
and a current state xn = x(tn),

For a given target BF k∈K, and an interval Tf∈I,
1. Generating a reference trajectory qd(tn + ta), ta∈[0, Tf ]

with which the robot can transit from the current state
xn to the center of the target BF µk in the interval Tf .

2. Abbreviating the trajectory to ta∈[0, Tn(xn, k)] where
Tn(xn, k) 6 Tf is decided from xn and k. Since the

Fig. 1. Illustration of how the possible actions of the DCOB at the Current
State are generated.

trajectory of step 1 may change the state greatly (Fig.
1 (b)), a behavior, i.e. a sequence of the trajectories,
is coarse. To make the behavior fine, the reference
trajectory is abbreviated by an estimated distance to
a neighbor BF (Fig. 1 (c)).

3. Following the abbreviated trajectory with a controller
u(tn + ta) = Ctrl(x(tn + ta), qd(tn + ta + δt)),
ta∈[0, Tn(xn, k)). The trajectory is terminated at t =
tn + Tn(xn, k), the action ends, and the time step n is
incremented by one.

Thus, the action set can be represented as A , K × I. The
interval Tf is chosen from a discrete set I whose size is
typically a small integer. Therefore, the size of the action
set is less than a few times of the number of the BFs. Fig.
1 illustrates how the possible actions at a current state are
generated. Thus, the exponential increase of the size of A is
prevented.

The DCOB has another advantage, that is, when the robot
is near the boundary of the state space, the DCOB prevents it
from exceeding the boundary. This is because in most cases,
few or no BFs are allocated out of the boundary. For instance,
a multi-link robot has no actions that exceed the joint limits
if some joint angles are already near the limits.

The role of the interval Tf is to configure the speed of
the action. In order to relax a problem that the speed of the
action changes with the distance between the current state
xn and µk even for the same Tf , we define I as follows:

δCp(xn, µk) = max
j

(Cp(µk)[j] − Cp(xn)[j]) (4)

I = {giδCp(xn, µk) | gi ∈ R, i = 1, 2, . . . } (5)



where Cp(·)[j] denotes j-th element of Cp(·), and gi is a
positive constant.

In the rest of this section, we describe the details of each
step.

A. Generating a Reference Trajectory

The purpose of this step is to generate a reference trajec-
tory qd(tn+ta), ta∈[0, Tf ] from the current state xn = x(tn)
to the center of the BF µk in the interval Tf . We simply use
a cubic function,

qd(tn + ta) = c0 + c1ta + c2t
2
a + c3t

3
a. (6)

The coefficients are determined with the following boundary
conditions:

qd(tn) = Cp(xn), qd(tn + Tf) = Cp(µk),
q̇d(tn + Tf) = Cd(µk), q̈d(tn + Tf) = 0

(7)

where 0 denotes zero vector. The definition of the boundary
conditions are discussed in section IV.

If the system is underactuated, such as a humanoid whose
body is not fixed to the environment (see section VI), the
robot can not transit to µk after following qd(tn + ta). How-
ever, this problem is not important for RL, since RL attempts
to maximize the discounted return with any predefined action
set.

B. Abbreviating the Trajectory

Next, we attempt to abbreviate the trajectory to ta ∈
[0, Tn(xn, k)] where Tn(xn, k) 6 Tf so that the state transits
to a neighbor BF. To calculate Tn(xn, k), first, we estimate
the distance from the current state xn to a neighbor BF
Dn(xn) (eq. (11)). Then we decide Tn(xn, k) from the ratio
of Dn(xn) and the distance between the current state and
the target BF (eq. (12)).

Initially, for each BF, k′∈K, we evaluate the distance to
the nearest BF dn(k′) as follows:

kn(k′) = arg min
k′′∈K,k′′ 6=k′

‖µk′′ − µk′‖ (8)

dn(k′) = max (‖µkn(k′) − µk′‖, dmin k′), (9)

where kn(k′) is the BF that is nearest from the BF k′.
dmin k′ is a constant related to the BF k′ to adjust dn(k′)
for very small ‖µkn(k′) −µk′‖. For a NGnet case, we define
as dmin k′ =

√
λk′ where λk′ is the maximum eigenvalue of

the covariance matrix of the BF k′.
dn(k′) is a special case of Dn(xn) where xn = µk′ . We

estimate Dn(xn) for a general xn∈X with φ(xn) defined in
eq. (2) as follows:

dn , (dn(1), dn(2), . . . , dn(|K|))> (10)

Dn(xn) = d>n φ(xn). (11)

Finally, we calculate Tn:

Tn(xn, k) =
min(Dn(xn), ‖µk − xn‖)

‖µk − xn‖
Tf . (12)

Note that Tn(xn, k) is equal to Tf if the distance to the target
BF ‖µk − xn‖ is less than Dn(xn).

C. Following the Abbreviated Trajectory
The abbreviated trajectory qd(t=tn + ta),

ta∈[0, Tn(xn, k)) is followed by a given controller
u(t) = Ctrl(x(t), qd(t + δt)), t∈[tn, tn + Tn(xn, k)). In a
simple PD controller case, it can be written as

u(t) = Kp{qd(t+δt)−Cp(x(t))}−KdCd(x(t)) (13)

where Kp and Kd are the gain parameters of the PD
controller.

IV. THEORETICAL BASIS OF THE DCOB
In this section, we discuss the convergence of RL with the

DCOB and the computational cost.

A. Convergence of RL with the DCOB
Before discussing about the convergence of RL with the

proposed action set DCOB, we define the relation between
the continuous task model and our discrete one as follows:

t0 = 0, tn =
n−1∑
n′=0

Tnn′ , xn = x(tn) (14)

Rn =
∫ tn+Tnn

tn

r(t)dt (15)

where Tnn denotes Tn calculated for an action an at a time
step n, r(t) denotes a reward given for the input u(t) from
the state x(t).

Most proofs of the convergence of RL with a linear
function approximator assumes a Markovian task [19], [20].
Assume that the task x(t), u(t), r(t) is Markovian. If
u(t), t∈[tn, tn + Tnn′) is determined by an and x(t),
t∈[tn, tn + Tnn′), it is obvious that the converted task xn,
an, Rn is also Markovian. The reference trajectory qd(t) and
the interval Tnn′ are calculated from the state x(tn) and the
action an. The given controller u = Ctrl(x, qd) calculates
the control input from a state and the reference trajectory.
Therefore, the converted task with the proposed action set
satisfies the conditions to be Markovian if the original task is
Markovian. Thus, the DCOB does not affect the convergence
of RL algorithms.

However, it is known that in many robotics applications
of RL, the generalization of a function approximator is
necessary but it affects Markovian (e.g. [21]). Though this
problem occurs in both the DCOB and the general RL cases,
we have to design the DCOB not to impose the Markov
property any more. To do this, let us consider the boundary
conditions (BCs) used to determine the coefficients of the
reference trajectory (eq. (6)). There are some candidates of
the BCs other than eq. (7), such as using q̇d(0) = Cd(x(0))
instead of q̈d(Tf) = 0. However, if the reference trajectory
were determined with the current velocity Cd(x(0)), the
trajectory would be so sensitive about Cd(x(0)) that an
action value function would become complex. In such case,
the Markov property might be affected. In most situations
of our preliminary experiments, eq. (7) resulted in a better
convergence and a discounted return compared to the other
BCs. These results are possible because the eq. (7) BCs
prevents to affect the Markov property unlike the other BCs.



B. Computational Cost

The Generating step and the Following step do not require
a large computational cost. On the other hand, the Abbrevi-
ating step requires O(|K|2) to calculate dn. However, dn can
be calculated before learning, since the parameters of the BFs
do not change during learning. Thus, the computational cost
of the Abbreviating step is reduced to O(|K|). Evaluating
the action value function also requires O(|K|), therefore, the
DCOB does not increase the computational cost substantially.

V. EXPERIMENTAL COMPARISON ON ROBOT
NAVIGATION TASK

We evaluate the proposed action set, DCOB, in a small
dimensional task where a conventional discrete action set
works well. Concretely, we apply it to a very simple navi-
gation task on a 2-dimensional plane.

We begin RL from scratch (θa = 0 for all a) in every
experiments. As an RL algorithm, we use Peng’s Q(λ)-
learning [22] with γ = 0.99, λ = 0.9, and a decreasing
step size parameter α = 0.7 exp(−0.002Neps). For exploring
actions, we use the Boltzmann policy selection with a
decreasing temperature τ = exp(−0.005Neps). Neps denotes
the number of episodes. These parameters and coefficients
are chosen through preliminary experiments.

A. Experimental Setup

We employ an omniwheel mobile robot that can move
in any direction on a 2-dimensional plane (x1, x2),
x1, x2∈[−1, 1] (Fig. 2). The state of the robot can be
expressed as x = (x1, x2)>, and its control input u =
(∆x1, ∆x2)> is the state transition in a time step δt = 0.01.
In this environment, there is some wind that changes the
behavior of the robot in the direction of the arrows shown in
Fig. 2. There are also walls which the robot can not cross but
is allowed to move along. The dynamics of the environment
is calculated as follows:

Input:current state x, control input u

Output:next state x′

if ‖u‖ > umax then u← u
‖u‖umax

apply wind: ∆x← u + wind(x)

apply walls:
if for a wall∈Wall , the line segment (wall .p1,wall .p2) and
the line segment (x, x+∆x) are crossing (see Fig. 3) then

uwall ← wall.p1−wall.p2
‖wall.p1−wall.p2‖

∆x← (u>
wall∆x)uwall

if for the other wall ′∈Wall\{wall}, the line segment
(wall ′.p1,wall ′.p2) and the line segment (x, x+∆x) are
also crossing then ∆x← 0

end if
return next state: x′ ← x + ∆x

where umax = 0.03 denotes the maximum norm of an input.
wind(x) denotes the effect of the wind at x, specifically,

wind(x) =


0 (‖x‖ < ρw1)

x
‖x‖w1 (ρw1 6 ‖x‖ < ρw2)
x

‖x‖w2 (ρw2 6 ‖x‖)
(16)

Fig. 2. The map of the robot navigation task.

Fig. 3. If the robot action, i.e. the line segment (x, x+∆x), and the wall
are crossing, the robot action is changed to move along the wall.

where w1 = 0.01, w2 = 0.08, ρw1 = 0.5, ρw2 = 1.0.
wall∈Wall denotes a wall whose elements are the start point
wall .p1 and the end point wall .p2.

The objective of the navigation task is to acquire a path
with which the robot can move from the start to the goal as
shown in Fig. 2. We design the reward function according
to this objective as:

r(t) = rg(t) − rsc(t) − ros(t) (17)
reward for goal:

rg(t) =

{
1 − max

t′∈[0,t)
rg(t′) (‖xg − x′‖ < ρg)

0 (otherwise)
(18)

step cost:

rsc(t) = 25‖u(t)‖2δt (19)
penalty for going out of the plane:

ros(t) =

{
0.5 − max

t′∈[0,t)
ros(t′) (x′ /∈ Xpl)

0 (otherwise)
(20)

where x′=x(t+δt), Xpl={(x1, x2)|x1∈[−1, 1], x2∈[−1, 1]}.
xg denotes the goal state, and ρg = 0.15 denotes the radius
of the goal. Note that the reward r(t) is not designed for each
action, but designed for time t in order to compare different
action sets evenly, since they have different intervals. In this
case, the reward for an action is calculated in the same
manner as eq. (15). The purpose of the maxt′ . . . component
in the definition of rg(t) is to set

∫ tn+Tnn

t′=tn
rg(t′)dt′ = 1 if the

agent goaled in the n-th action; the definition of ros(t) is the
same. Each episode begins with the start state x(0) = xs,
and ends if the robot has reached the goal, gone outside
(x′ /∈ Xpl), or t > 12.



We use NGnet with 64 BFs allocated as shown in Fig.
2 to approximate the action value function. These BFs are
allocated on a 8 × 8 grid with added random noise to each
center and covariance.

B. Action Set Configurations

In order to apply the DCOB, let Cp, Cd, Ctrl , and I as
follows:

Cp(x) = x = (x1, x2)> (21)

Cd(x) = (0, 0)> (22)
Ctrl(x(ta), qd(ta + δt)) = qd(ta + δt) − Cp(x(ta)) (23)
I = {0.3δCp(x, µk)} (24)

where δCp(x, µk) is defined in eq. (4). The size of the action
set is |A| = |K||I| = 64.

We compare the DCOB with a very simple action set that
are often used in RL applications (e.g. [9]). For the robot
navigation task, we define a “Radial Action Set” AR where
actions are constructed to move radially from the current
state. Specifically,

∆ϕ = 2π/Ndir

AR = {dira | dira = (− sin(a∆ϕ), cos(a∆ϕ))>,

a = 0, . . . , Ndir − 1} (25)

where Ndir denotes the number of directions. Each action
a∈AR is executed as follows:

u(ta) = umaxdira, ta ∈ [0, TR) (26)

where TR denotes the interval of the action. We choose
TR = 0.1 that have given the best performance in preliminary
experiments.

C. Results

We compared the DCOB A and the radial action set AR

of Ndir = 3, 4, 6, 8, 16, 32, 64. Fig. 4 shows the resulting
learning curves (the mean of the return per episode over
25 runs). The radial action set AR has a tendency that the
learning speed decreases with increasing Ndir. However, the
learning speed of the DCOB is faster than every AR, in spite
of |A| = 64. It is considered to be a main factor that with the
DCOB, the robot has few actions to go out of the plane Xpl

since there are few BFs allocated out of Xpl. As a result, the
robot with the DCOB has learned to get to the goal faster
than the robot with the other action set.

VI. EXPERIMENTAL COMPARISON ON MOTION
LEARNING OF MULTI-LINK ROBOT

Next, we evaluate the proposed action set, DCOB, in
motion learning of a multi-link robot that has higher state
and action space dimensionality. The following experiments
are performed on a dynamics simulator, ODE1.

We begin RL from scratch (θa = 0 for all a) in every
experiments. As an RL algorithm, we also use Peng’s Q(λ)-
learning [22] with γ = 0.9, λ = 0.9, and a decreasing step

1Open Dynamics Engine: http://www.ode.org/

Fig. 4. Resulted learning curves of the robot navigation task. Each curve
shows the mean of the return per episode over 25 runs. R? denotes AR of
Ndir = ?.

size parameter α = α0 exp(−δαNeps). For exploring actions,
we use the Boltzmann policy selection with a decreasing
temperature τ = τ0 exp(−δτNeps). Neps denotes a number
of episodes. In following experiments, we set α0 = 0.7,
δα = 0.002, τ0 = 5, δτ = 0.004 for the crawling task, and
α0 = 0.7, δα = 0.0001, τ0 = 15, δτ = 0.001 for the jumping
task.

A. Robotic System

The robot we use is a humanoid robot whose DoF is
constrained to five as shown in Fig. 5. The state and the
input spaces have large dimensionality for RL. Specifically,
the state space X is 21-dimensional and the input space U
is 5-dimensional as defined as follows:

x = (c0z, qw, qx, qy, qz, q1, q2, q3, q4, q5,

ċ0x, ċ0y, ċ0z, ωx, ωy, ωz, q̇1, q̇2, q̇3, q̇4, q̇5)> (27)

u = (u1, u2, u3, u4, u5)> (28)

where (c0x, c0y, c0z) denotes the position of the center-of-
mass of the body link, (qw, qx, qy, qz) denotes the rotation
of the body link in quaternion, (ωx, ωy, ωz) denotes the
rotational velocity of the body link, qj (j=1, .., 5) denotes
the joint angles, uj (j=1, .., 5) denotes the joint torques. The
reason for the absence of c0x and c0y from the state x in eq.
(27) is that the agent should be able to learn the following
tasks (crawling and jumping tasks) without them. The joint
torque is limited to |uj | 6 umax = 2.06[Nm] for j = 1, .., 5.
The simulations are performed with a time step δt = 0.2[ms].

B. Basis Functions

Even if we allocate only 3 BFs per dimension on the
state space, 321 ≈ 1010 BFs are used which is obviously
unrealistic. In order to deal with this problem, we generate
the BFs so that the function approximator can estimate the
dynamics of the robot. Specifically, first, we train a NGnet
with a sequential data sampled from random motions by
the EM algorithm [12]. After that, we execute RL with the
obtained BFs to approximate a value function. More BFs
may be allocated in state where the dynamics is highly
nonlinear, while fewer in state where the dynamics is nearly



Fig. 5. Humanoid robot whose DoF is constrained to five.

linear. Generally, high nonlinearity requires a complex con-
troller, namely, a complex action value function. Therefore,
generating the BFs from training the dynamics enables the
function approximator to estimate a value function precisely
with fewer BFs. This method is proposed by Yamaguchi et
al. [16] based on the idea of MOSAIC [23], [24].

For our robot, we initially prepared 200 BFs for a NGnet,
and trained by the off-line EM algorithm with unit manipu-
lations used in [12]. Finally, we obtained 202 BFs.

C. Action Set Configurations

In order to apply the DCOB, let Cp, Cd, Ctrl , and I as
follows:

Cp(x) = (q1, q2, q3, q4, q5)> (29)

Cd(x) = (q̇1, q̇2, q̇3, q̇4, q̇5)> (30)
Ctrl(x(ta), qd(ta + δt))

= Kp{qd(ta+δt) − Cp(x(ta))} − KdCd(x(ta)) (31)
I = {giδCp(x, µk) | gi = 0.075, 0.1, 0.2} (32)

where Kp = 5.0, Kd = 1.6, and δCp(x, µk) is defined in
eq. (4). The size of the action set is |A| = |K||I| = 606.

As a comparison, we employ a “Grid Action Set” AG

defined as follows:

AG =
{
∆q | ∆q = (δq1, δq2, δq3, δq4, δq5)>,

δq1,2,3,4,5 ∈ {0,±∆ϕ, . . . ,±Ngrid−1
2 ∆ϕ}

}
(33)

where ∆ϕ = π/12, and Ngrid denotes the number of division
of the grid. The size of AG, |AG| = N5

grid, becomes too large
for Ngrid > 7, so we use Ngrid = 3 and 5 in the following
experiments. Each action ∆q ∈ AG is executed as

qd = Cp(x(0)) + ∆q (34)
u(ta) = Kp{qd − Cp(x(ta))} − KdCd(x(ta)) (35)

where ta ∈ [0, TG). TG = 0.1[s] denotes the interval of the
action.

D. Crawling Task

First, we apply the RL to acquire a crawling motion whose
objective is to move forward along the x-axis as far as

Fig. 6. Resulted learning curves of the crawling task. Each curve shows the
mean of the return per episode over 10 runs. GRID3, 5 denotes Ngrid = 3, 5
respectively.

possible. According to this objective, we design the reward
function as follows:

r(t) = rmv(t) − rse(t) − rsc(t) − rfd(t) (36)
reward for moving:

rmv(t) = 0.01ċ0x(t) (37)
penalty for simulation error:

rse(t) = 0.1{c0y(t)}2 (38)
step cost:

rsc(t) = 0.1‖u(t)‖δt (39)
penalty for falling down:

rfd(t) =

{
4 − max

t′∈[tn,t)
rfd(t′) (falling down)

0 (otherwise)
(40)

where the falling down of the robot is defined as the body
link or the head link touching the ground. rse(t) is usually
zero, but has a value for simulation error. Similar to the
navigation task, these rewards are designed for time t to
compare different action sets evenly, where the reward for an
action is calculated by eq. (15). The purpose of the maxt′ . . .
component of rfd(t) is to prevent it from becoming a huge
value. Each episode begins with the initial state where the
robot is standing up (Fig. 5 left) and stationary, and ends if∫ t

0
r(t′)dt′ 6 −40 or t > 20[s].
Fig. 6 shows the learning curves (the mean of the return

per episode over 10 runs) resulted from applying RL with the
action set A and AG of Ngrid = 3, 5. The learning speed
of AG of Ngrid = 3 is as fast as, or slightly faster than
the DCOB. This is because |AG| = 243 is smaller than
|A| = 606. However, the performance of the acquired motion
with the DCOB is obviously better than AG. The DCOB is
considered to provide a better action set for the robot motion
by constructing from the BFs. AG of Ngrid = 5 is inferior
both in the learning speed and the acquired performance. Fig.
7 shows the acquired crawling motion with the DCOB (see
also the accompanying video).



Fig. 7. Sequence of the acquired crawling motion with the DCOB.

E. Jumping Task

Next, we apply the RL to acquire a more difficult motion,
jumping. The objective is to jump as high as possible without
falling down. According to this objective, we design the
reward function as follows:

r(t) = rjp(t) − rsc(t) − rfd(t) (41)
reward for jumping:

rjp(t) =
{

0 (not jumping)
100c1z(t)δt (otherwise) (42)

where c1z denotes the z-position of the head link, i.e. the
height of the head, rsc(t) and rfd(t) are the same definition
as eq. (39) and (40) respectively. The not jumping condition
is defined as when the feet are touching the ground, ċ1z(t) <
0, or c1z(t) < 0.75c1z(0). Each episode begins with the
initial state where the robot is standing up (Fig. 5 left) and
stationary, and ends if one of the following is satisfied:

(1)
∫ t

0
rfd(t′)dt′ > 0,

(2) feet are touching the ground,
∫ t

0
rjp(t′)dt′ > 0, and

the robot is stationary,
(3) t > 5[s].

The robot is judged stationary if every velocity element of
the state is less than 1[m/s] or 1[rad/s].

Fig. 8 shows the learning curves resulted from applying
RL with the action sets A and AG. The learning speed of
AG of Ngrid = 3 also looks faster than the others. However,
its acquired performance is the worst. AG of Ngrid = 3 is
considered not to have sufficient actions to perform jumping,
while the DCOB also seems to provide a suitable action set.
Fig. 9 shows the acquired jumping motion with the DCOB
(see also the accompanying video).

VII. RELATION TO OTHER WORKS

A. Options

Sutton et al. proposed the options which are generalized
actions of primitive and macro actions under the RL frame-
work [25]. Our DCOB can be regarded as a kind of the
options specialized for robot control. There is some research
about finding options or subgoals automatically [26], [27],
[28], but the discovery of the optimal options is still a open
problem. The DCOB is a practical solution to it.

Fig. 8. Resulted learning curves of the jumping task. Each curve shows the
mean of the return per episode over 10 runs. GRID3, 5 denotes Ngrid = 3, 5
respectively.

Fig. 9. Snapshots of the acquired jumping motion with the DCOB.

B. Compatibility with the other BFs

In this paper, we used the DCOB only with the Normalized
Gaussian Network (NGnet). However, we can also use the
DCOB with the other BFs if they satisfies the assumptions
mentioned in section III, that is, each BF has a fixed center
in the state space. For instance, Takahashi et al. uses a
kind of function approximators that has a center in the state
space (they call a representative state vector) [29]. Using
the DCOB with their function approximator requires slight
modifications, such as defining dmin k′ in eq. (9).

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a compact action set, DCOB,
for RL that are constructed from the basis functions (BFs)
for approximating a value function. This method can exploit
the function approximator’s nature, that is, the number of
the BFs does not increase exponentially with the dimension



of the state space. The DCOB also has a remarkable feature
that a robot does not take actions that exceed its limitations if
the BFs are not allocated out of the limitations. For instance,
the robot tends to avoid exceeding the joint limits. The
simulation results demonstrate that the DCOB is superior to
conventional discrete action sets both on the learning speed
and the acquired performance.

The DCOB requires some assumptions, namely, a BF
has a fixed center in the state space and Cp, Cd,Ctrl are
defined (see section III). These assumptions may restrict the
other applications of the DCOB. Especially, some researchers
proposed to improve the BFs (e.g. [2], [5]), that is, a center of
a BF is changed in the RL process. If the center were changed
in the learning, convergence would not be guaranteed (see
section IV).

In the near future, we apply our results to real robots and
investigate its validity. We also apply DCOB to other tasks,
such as a standing up motion [2]. Moreover, we will check
the compatibility with the Dyna framework [1], and compare
it with a continuous action set, such as wire-fitting [13], in
higher dimensional tasks.
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