
Reinforcement Learning for Balancer Embedded Humanoid Locomotion

Akihiko Yamaguchi, Sang-Ho Hyon, and Tsukasa Ogasawara

Abstract— Reinforcement learning (RL) applications in
robotics are of great interest because of their wide applicability,
however many RL applications suffer from large learning costs.
We study a new learning-walking scheme where a humanoid
robot is embedded with a primitive balancing controller for
safety. In this paper, we investigate some RL methods for
the walking task. The system has two modes: double stance
and single stance, and the selectable action spaces (sub-action
spaces) change according to the mode. Thus, a hierarchical RL
and a function approximator (FA) approaches are compared in
simulation. To handle the sub-action spaces, we introduce the
structured FA. The results demonstrate that non-hierarchical
RL algorithms with the structured FA is much faster than the
hierarchical RL algorithm. The robot can obtain appropriate
walking gaits in around 30 episodes (20∼30 min), which is
considered to be applicable to a real humanoid robot.

I. INTRODUCTION

Designing behavior by only its objective is essential to
future robots, since this ability enables the end-users to easily
teach their wish to the robots. Reinforcement learning (RL)
is such a technology, so, RL applications in robotics are of
great interest. Additionally, model-free RL algorithms are
applicable without the dynamics model of the environment.
Hence, a lot of works have been done in applying RL
methods to robot control [1]∼[11]. In this paper, we focus
on the RL application to humanoid locomotion.

Past research on RL applications to locomotion utilizes
central pattern generators (CPGs) [4], [5], [7], or a property
of passive dynamic walking [1], [6]. These methods restrict
the behavior of the robot to certain patterns or dynamics. But
such restriction is desirable for walking, which reduces the
learning time greatly.

In contrast, we study a new learning-walking scheme
where a humanoid robot embedded with a primitive balanc-
ing controller [12], [13] learns to walk (Fig. 1). This scheme
has two advantages: (1) the robot can learn in safety, and (2)
the size of a state-action space can be reduced. The balancing
controller restricts the behavior of the robot to avoid falling
down. Using the remaining DoF (degree of freedom), the
robot learns to walk. Actually, the robot can still move its
center of mass and a foot, which is capable to walk. However,

Part of this work was supported by a Grant-in-Aid for JSPS, Japan Society
for the Promotion of Science, Fellows (22·9030)

A. Yamaguchi (JSPS Research Fellow) and T. Ogasawara are with
the Graduate School of Information Science, Nara Institute of Sci-
ence and Technology, 8916-5, Takayama, Ikoma, Nara 630-0192, JAPAN
{akihiko-y, ogasawar}@is.naist.jp

S. Hyon is with the Department of Robotics, Ritsumeikan Uni-
versity, 1-1-1 Noji Higashi, Kusatsu, Shiga 525-8577 JAPAN gen
@fc.ritsumei.ac.jp

A. Yamaguchi and S. Hyon are also with the Computational Neu-
roscience Laboratories, Advanced Telecommunications Research Institute
International (ATR), Kyoto 619-0288, JAPAN

Fig. 1. Illustration of our learning-walking scheme. (a) A humanoid
robot embedded with a primitive balancing controller learns walking.
(b) Selectable actions in the double and the single stance modes. (c) Sub-
action spaces.

the dynamics of the robot with the controller becomes so
complex that we cannot easily identify the dynamics model.
Thus, it is difficult to design optimal walking gaits. Even so,
model-free RL methods are applicable to this case.

Compared to the CPG approaches, our scheme is consid-
ered to be safer since falling down is automatically prevented
by the balancing controller. In some passive dynamic walking
approaches, the falling down of the robot is avoided due to
its hardware property. For instance, falling down of the robot
in [1] is a rare occasion. However, such kind of avoidance
restricts the variety of robot behavior a lot. In contrast, our
scheme is a software approach. That is, we can choose to
use the balancing controller or not, which keeps the variety
of the humanoid behavior.

In this paper, we investigate some applicable RL methods
for our scheme. The features of our RL task are as follows:
(F1) The robot learns from scratch to obtain better perfor-

mance than hand-coded policies.
(F2) The robot uses an on-line learning method (or batch

mode of small sizes) to handle (F1) and reduce learning
cost.

(F3) The robot has two modes: double stance and sin-
gle stance, and the selectable action spaces (we call
sub-action spaces) change according to the mode (Fig.
1(b), (c))

To handle (F3), we consider a hierarchical RL approach
([10], [14], [15]) and a structured function approximator
(FA) approach. Kirchner applied a hierarchical version of



Q-learning (HQL) to a similar task, the forward movement
of a six-legged robot [10]. However, in our task, only two
layers are needed to handle (F3). In this case, we can define a
single FA into which the sub-FAs (corresponding to the sub-
action spaces) are structured. Then we apply a normal (non-
hierarchical) RL method to the structured FA. In general,
if available prior knowledge of task is almost the same, a
hierarchical RL method is inferior to a normal RL method
since the former one has to limit its algorithm for converge.
Thus, the structured FA is considered to be a better approach.
Thus, we compare Peng’s Q(λ)-learning [16] and fitted Q
iteration [17], [18] with the structured FA, and Cohen’s
hierarchical RL (HRL) algorithm [15].

Our simulation results demonstrate that the FA approach is
much superior to the hierarchical approach in both learning
speed and the performance of the acquired walking gaits.
The robot can obtain appropriate walking gaits in around 30
episodes (20∼30 min), which is considered to be applicable
to a real humanoid robot.

In the rest of this paper, we describe the RL algorithms
used in this paper in section II, then define the FAs in section
III. We present the simulation results in section IV, and
conclude the paper in section V.

II. REINFORCEMENT LEARNING ALGORITHMS

The purpose of RL is for a learning system (agent) whose
input is a state xn ∈ X and a reward Rn ∈ R, and whose
output is an action un ∈ U , to acquire the policy π(xn) :
X → U that maximizes the expected discounted return
E

[∑∞
k=1 γk−1Rn+k

]
where n ∈ N = {0, 1, . . . } denotes

the time step and γ ∈ [0, 1) denotes a discount factor. In
value-function-based RL algorithms, an action value function
Q(x, u) : X × U → R is learned to represent the expected
discounted return by taking an action u from a state x. Then,
the optimal action rule is obtained from the greedy policy
π(x) = arg maxu Q(x, u).

Another approach to find the optimal policy is search-
ing directly in the policy space. The Natural Actor Critic
(NAC) [3] is a typical example. However, this kind of
approach strongly depends on the initial value of the policy
parameter, especially in large domains. In our learning-from-
scratch case, we assume that the value-function-based RL
methods may obtain better policy since they can have richer
policy parameterization. Thus, we test Peng’s Q(λ)-learning
algorithm [16] and fitted Q iteration algorithm [17], [18].

In general, fitted Q iteration requires appropriate samples,
but it is difficult to obtain such samples with a random
policy. In our preliminary experiments, though we applied
fitted Q iteration in batch mode of small sizes, we were
aware that Q(λ)-learning is better in the early stage of
learning. A possible reason is that since we reduce the set
of basis functions of a FA to improve the learning speed,
the system loses the Markov property. Thus, we mainly use
Q(λ)-learning, and apply fitted Q iteration to the same FA
only with sample sequences of higher return.

In the rest of this section, we introduce these RL algo-
rithms. Additionally, we briefly describe Cohen’s hierarchical

RL (HRL) algorithm [15].

A. Peng’s Q(lambda)-Learning Algorithm

The Peng’s Q(λ)-learning algorithm [16] is an on-line RL
method. The update procedure for a generic FA Q(x, u) of
the parameter θ ∈ Θ is written as follows:

en = Rn + γVn(xn+1) − Vn(xn), (1a)
e′n = Rn + γVn(xn+1) − Qn(xn, un), (1b)

θn+1 = θn + αenTrn + αe′n∇θQn(xn, un), (1c)
Trn+1 = (γλ)(Trn + ∇θQn(xn, un)), (1d)

where ∇θQ(x, u) denotes the derivative of Q(x, u) w.r.t.
the parameter θ, α denotes a step-size parameter, Tr de-
notes the eligibility trace (Tr0 = 0 ∈ Θ), and Vn(x) ,
maxu Qn(x, u). This update procedure is applied after each
action.

B. Fitted Q Iteration Algorithm

The fitted Q iteration algorithm [17], [18] is a batch mode
RL method to learn from sample trajectories whose element
is a four-tuple Fn = (xn, un, xn+1, Rn). The idea of fitted Q
iteration is as follows: first, we build a training set from the
current FA and a set of four tuples. Then, we train the next
FA with the training set by a supervised learning method.
Iterating these two steps, the FA will converge to the action
value function.

The action value FA Q0 is initialized so that Q0(x, u) = 0
for all (x, u) ∈ X ×U . In the N -th iteration, the training set
{in, on} is built from the current FA QN−1 and the set of
four tuples {Fn} by

in = (xn, un), (2)
on = Rn + γ max

u
QN−1(xn+1, u). (3)

Then, QN is trained with {in, on}. We implement this
supervised learning with a gradient descent for the least
squares.

As mentioned above, we combine fitted Q iteration and
Q(λ)-learning. At the end of each action, we apply the update
rule of Q(λ)-learning and store the sample. At the end of
every NFQI episodes, we execute an iteration of fitted Q
iteration with the samples in the top Nsmpl episodes ranked
by the return of the episode.

C. Cohen’s Hierarchical Reinforcement Learning

As a hierarchical RL method, we use Cohen’s hierarchical
RL (HRL) [15]. Many hierarchical RL methods require that a
task can be decomposed into sub-tasks. But, in our case, we
only design a single reward function. Thus, the hierarchical
RL methods requiring sub-tasks are not applicable to our
case. However, Cohen’s HRL uses a single reward function,
which is suitable for our case. Thus, we choose it.

Though Cohen’s HRL is developed for discrete state-
action spaces, we extend this algorithm in a straightforward
way so that a FA is available for each module.

For our task, we construct a two layer modular structure.
Specifically, it has one higher module and several lower



modules. Each lower module has its unique sub-action space.
The higher module selects a lower module as an action.

III. FUNCTION APPROXIMATORS

Next, we describe some FAs for the action value functions
Q(x, u). For a continuous state space X and a discrete action
space U , we use a linear FA because of its stability. If both
the state and the action spaces are continuous, we employ
wire-fitting [19]. The remarkable feature of wire-fitting is
that we can maximize Q(x, u) w.r.t. u by evaluating only on
a fixed number of points. We define the structured FA for our
walking task, where the action space consists of discrete sets
and continuous vector spaces whose selectability depends on
the state.

A. Linear Function Approximator

For a continuous state x ∈ X and a discrete action
u ∈ U , we let Q(x, u) = θ>u φ(x), where φ(x) =
(φ1(x), . . . , φ|K|(x))> denotes the feature vector of a state
x, K = {φk | k = 1, 2, ..} denotes a set of basis functions,
and θu ∈ R|K|×1 denotes a parameter related to an action u.
The parameter vector is defined as θ = (θ>1 , . . . , θ>|U|)

> ∈
R|K||U|×1. The derivative of the Q(x, u) w.r.t. θ is given
by ∇θQn(x, u) = (δ1uφ>

1 , . . . , δ|U|uφ>
|U|)

> where δ denotes
the Kronecker’s delta.

As basis functions, we use Normalized Gaussian Network
(NGnet) [20] which is sometimes used as the basis functions
of FAs in RL applications [11]. In NGnet, φk(x) is given by

φk(x) =
G(x; µk,Σk)∑

k′∈K G(x; µk′ ,Σk′)
, (4)

where G(x; µ,Σ ) denotes a Gaussian with mean µ and
covariance matrix Σ . In the case of a linear FA, K is pre-
defined and {µk,Σk | k ∈ K} are treated as fixed parameters.
In the following, a linear FA with NGnet is referred to as
LFA-NGnet.

B. Wire-Fitting

For a continuous state x ∈ X and a continuous action
u ∈ U , wire-fitting is defined as:

Q(x, u) = lim
ε→0+

∑
i∈W(di + ε)−1qi(x)∑

i∈W(di + ε)−1
, (5)

di = ‖u − ui(x)‖2 + C
[
max
i′∈W

(qi′(x)) − qi(x)
]
. (6)

Here, a pair of the functions qi(x) : X → R and ui(x) :
X → U (i ∈ W) is called a control wire; wire-fitting is
regarded as an interpolator of the set of control wires W . C
is a smoothing factor of the interpolation; we choose C =
0.001 in the experiments. Any FA is available for qi(x) and
ui(x). Regardless of the kind of the FAs, one of qi(x), i ∈ W
is equal to maxu Q(x, u) and the corresponding ui(x) is the
greedy action at x.

We use NGnet for qi(x) and a constant vector for ui(x),
that is, we let qi(x) = θ>i φ(x) and ui(x) = Ui, where φ(x)
is the feature vector of the NGnet. The parameter vector θ is
defined as θ> = (θ>1 , U>

1 , θ>2 , U>
2 , . . . , θ>|W|, U

>
|W|), and the

gradient ∇θQ(x, u) can be calculated analytically.

As an exploration policy in using wire-fitting, we use the
Boltzmann-like selection method proposed in [21]. A control
wire i is considered to be a discrete action whose action
value is qi(x), and one of the control wires is chosen by
Boltzmann selection. Then the corresponding ui(x) is the
selected action. We refer to this method as WF-Boltzmann.

C. Structured Function Approximator

Next, we define a FA for our walking task where the
action space consists of discrete sets and continuous vector
spaces whose selectability depends on the state. Such an
action space can be defined as a direct sum of discrete
sets and vector spaces. Thus, we denote the action space
as U =

⊔
p∈P Up, where Up is a sub-action space and P is

a set of sub-space indexes. Again, see Fig. 1(b), (c) as an
example of a set of sub-action spaces. In the following, we
denote u = (p, up) ∈ U for convenience. We use P(x) ⊆ P
to express the selectable sub-action spaces at a state x.

We simply define a FA over the action space U by
structuring (combining) sub-action value functions. First of
all, we define each sub-action value function Qp(x, up) over
X × Up. We choose the LFA-NGnet for a discrete set Up,
and wire-fitting for a continuous space Up. Then we define
the overall Q as

Q(x, u) ,
∑
p′∈P

δpp′Qp′(x, up′) = Qp(x, up), (7)

where u = (p, up). We let θp the parameter of a sub-action
value function Qp. The parameter vector of the Q can be
defined as θ = (θ>1 , . . . , θ>|P|)

>. The derivative of Q w.r.t. θ
is given by

∇θQ(x, u)> =
(
δp1∇θ1Q1(x, u1)>,

. . . , δp|P|∇θ|P|Q|P|(x, u|P|)>
)
, (8)

where u = (p, up).
The greedy action at x can be given by

u? = arg max
u∈

F

p∈P(x) Up

Q(x, u). (9)

This can be evaluated as follows: (1) calculating ûp =
arg maxup∈Up

Qp(x, up) for all p ∈ P(x), (2) calculating
u? = arg maxu∈{ûp} Q(x, u).

As an exploration policy, we define a two-stage action
selection method so that the RL agent can explore as broadly
as possible and it has a scalability for any kind of sub-FAs. In
the first stage, for each p ∈ P(x), select a sub-action ûp from
Up based on Qp(x, up). Here, we use Boltzmann selection
if Qp is the LFA-NGnet and WF-Boltzmann selection if Qp

is wire-fitting.
In the second stage, select an action u from {ûp|p ∈ P(x)}

based on their action values {Qp(x, ûp)}. We use a weighted
version of Boltzmann selection to consider the size of Up so
that the RL agent can broadly explore. That is,

π(ûp|x) =
wp exp( 1

τ Qp(x, ûp))∑
p′∈P(x) wp′ exp( 1

τ Qp′(x, ûp′))
, (10)



(a) (b) (c)

z

x y

Fig. 2. SARCOS biped humanoid robot developed by NICT/ATR.
(a) Hardware. (b) DoF configuration. (c) Simulation model.

where wp denotes the weight to compensate the size of Up.
We decide the weights {wp} so that they are proportional to
the size of the action set Up if Up is discrete, or to the number
of the control wires of Qp if Qp is wire-fitting. Note that in
the early stage of learning, the probability of ûp is nearly
proportional to wp, which makes the exploration appropriate
for the size of Up.

IV. EXPERIMENTS: LEARNING WALKING OF A
HUMAN-SIZE HUMANOID ROBOT

We apply the RL methods mentioned above to the walking
task of a human-size biped humanoid robot shown in Fig. 2.
The humanoid robot has 50 DoF and torque controllability
with hydraulic actuation [22]. Its height is 1.58 m, and its hip
height is 0.82 m when at an upright posture. It weighs 93.7
kg. Its DoF configuration is shown in Fig. 2(b). The arms
and legs each have 7 DoFs, and the neck and torso each
have 3 DoFs. In this section, we demonstrate a simulation
comparison of the RL methods. In the experiments, we
use a dynamics simulator with a presice model (Fig. 2(c))
including a well-tuned contact model.

A. Robotic System Setup for RL

The robot is embedded with the balancing controller [13].
It regulates the center of mass (CoM) to the center of
the supporting region through the optimal force control.
For biped walking case, the desired CoM, as well as the
position of the swinging foot should be varied. Although the
controller has compliant stabilization and terrain-adaptation
abilities, its performance is not satisfactory for dynamic
situations because of sensory delays and limitations in the
low-level joint controllers. Thus, we investigate which RL
method is most appropriate for this situation.

The state given to the RL agent consists of the stance
mode, {left, double, right}, the position of the CoM, and the
previous stance mode. We also tested the velocity of the CoM
instead of the previous stance mode. But, the velocity is so
sensitive to sensor noise and is therefore not suitable for the
real robot case. Thus, the state x is defined as

x = (modest, xcm, ycm,modepst). (11)

In the following experiments, we allocate 405 Gaussians on
a 3 × 9 × 5 × 3 grid as the basis functions of the NGnet.

������������	
�
��������������	
�
��

����������������� �������������

Fig. 3. Illustration of the sub-action spaces of the walking task.

Though the robot with the balancing controller can move
the position of the CoM and the swinging foot, we pre-
implement some primitive CoM movements so that the RL
agent can learn the task easily. Thus, the available sub-
action spaces are defined as illustrated in Fig. 3. Specifically,
the available sub-action space in the double stance mode is
defined as follows.
Uchst = {to-R, to-L} : Changing the stance mode to right or

left. Specifically, the position of CoM is moved to above
the left/right foot, then the other foot is raised up. These
actions are executed in 1.0 second respectively.

And the available sub-action spaces in the single stance mode
are defined as follows.
Udwnft = {down} : Putting down the swinging foot. This

action is executed in 1.0 second.
Usf = {(∆xsf , ∆ysf) | ∆xsf , ∆ysf ∈ R} : Moving xsf and

ysf which denote the x and y positions of the swinging
foot. ∆xsf and ∆ysf denote their differences. This action
is executed in 0.1 second.

Namely, the action space is U = Uchst t Udwnft t Usf , and
the selectable action spaces at a state x can be written by

P(x) =
{

{chst} if modest = double,
{dwnft, sf} if modest = left or right.

(12)

B. RL Methods Configurations

For the discrete action spaces Uchst and Udwnft, we define
Qchst and Qdwnft as the LFA-NGnet, respectively. For the
continuous action space Usf , we define Qwf

sf as wire-fitting.
For comparison, we also define Qdisc

sf as the LFA-NGnet over
Udisc

sf defined by discretizing Usf with a 3 × 3 grid. The
parameters of every LFA-NGnet are initialized to zero. About
Qwf

sf , {θi|i ∈ W} are initialized to zero, while {Ui|i ∈ W}
are initialized with points of a 3 × 3 grid on Usf .

In this experiments, we compare the following combina-
tions of the RL algorithms and the sub-FAs1.
S-WF-QL : Q(λ)-learning for Qwf where Qchst, Qdwnft, and

Qwf
sf are structured.

S-WF-QLFQI : The combination of Q(λ)-learning and fitted
Q iteration for Qwf .

S-DISC-QL : Q(λ)-learning for Qdisc where Qchst, Qdwnft,
and Qdisc

sf are structured.
S-DISC-QLFQI : The combination of Q(λ)-learning and

fitted Q iteration for Qdisc.
S-DISC-Q0LFQI : The combination of Q(0)-learning and

fitted Q iteration for Qdisc.

1We used the RL library, SkyAI: skyai.sourceforge.net



HRL : Cohen’s HRL for a two layer modular structure where
the lower modules learn Qchst, Qdwnft, and Qdisc

sf . The
higher module learns the policy to select a lower module.

The S-DISC-Q0LFQI is compared to verify the effect of the
eligibility trace (λ). The reason why Qdisc

sf is used in the
HRL rather than Qwf

sf is due to the stability of the linear FA.
For every RL method, we set γ = 0.95. We

use a decreasing step size parameter α = max(0.05,
0.3 exp(−0.002Neps)) for Q(λ)-learning and the HRL. Neps

denotes a number of episodes. For fitted Q iteration, we use
a constant step size parameter α = 0.05. For Q(λ)-learning,
we set λ = 0.9 and apply the replacing trace [23] to make
the eligibility trace stable (see also [24]). For the combination
of Q(λ)-learning and fitted Q iteration, we set NFQI = 3 and
Nsmpl = 10. As the exploration policy, we use Boltzmann
(or Boltzmann-like) selection, with a decreasing temperature
τ = 1.0 exp(−0.002Neps).

C. Task Setting

The objective of the walking task is to move forward
along the x-axis as far as possible. Though the balancing
controller is embedded, the robot still has a probability of
falling down. The balancing controller employed in this
paper does not consider the swinging leg motions explicitly.
When the swinging leg moves too fast and CoP locates near
the supporting edge, then the robot can lose the stability.
Thus, we design the reward function as follows:

r(t) = rmv(t) − rsc(t) − rfd(t), (13a)
rmv(t) = 200vcmx(t)δt, (13b)
rsc(t) = 1δt, (13c)

rfd(t) =
{ 50 if falling-down,

0 otherwise, (13d)

where rmv means a reward for moving, rsc means a step
cost, and rfd means a penalty for falling down2. The reward
function r(t) is integrated from the start time to the finish
time of an action, and given to the RL agent. Each episode
starts with the initial state where the robot is standing up
(first snapshot in Fig. 6) and stationary, and ends if t > 75 s
or the robot is falling down.

D. Result

Fig. 4 shows the resulting learning curves of the walking
task (the mean of the return over 10 runs per episode).
The horizontal axis is logarithmic scale. The horizontal line
(MANUAL) shows the performance of a manually manipu-
lated walking with a keyboard interface3. Fig. 5 shows the
trajectory in an episode of the CoM position of a walking
gait acquired by the S-WF-QLFQI, and Fig. 6 shows the
corresponding snapshots.

The HRL and the S-DISC-Q0LFQI are very slow, that
is, they take a lot of episodes to acquire performance. The
possible reason is that the update rule of the HRL is similar to

2Specifically, the falling-down is defined as (|φ| > 25.0◦) ∨ (|θ| >
25.0◦) where φ and θ denote the x and y-Euler angles respectively.

3The maximum return value in 30 trials is plotted.

Fig. 4. Resulting learning curves of the walking task. Each curve shows the
mean of the return over 10 runs per episode. The horizontal line (MANUAL)
shows the performance of a manually manipulated walking with a keyboard
interface.

Fig. 5. Trajectory of the CoM position. Small arrows indicate the direction
of the movement. Note that the origin of the CoM is the center of the feet.

Fig. 6. Animation snapshots.

Q(0)-learning which may be poor for the walking task. About
the S-DISC-Q0LFQI, Q(0)-learning is dominant in the early
stage of learning rather than fitted Q iteration since suitable
samples are not obtained yet. Thus, the S-DISC-Q0LFQI is
considered to be as slow as the HRL.



All of the methods using Q(λ)-learning are much faster
than these two methods. Thus, the eligibility trace (λ) is
considered to be very effective for the walking task.

The acquired performance of the S-WF-QLFQI is the
best, that is, it converges to the highest value of the return.
It substantially exceeds the performance of the manually
manipulated walking. Compared with Qdisc, the FA Qwf has
an ability to acquire better performance since Qwf directly
approximate over the continuous action space Usf by wire-
fitting. However, there is no performance difference between
the S-DISC-QL and the S-WF-QL because of the instability
of wire-fitting caused by its nonlinearity. Thus, we consider
the reason for the best performance of the S-WF-QLFQI
is due to both using wire-fitting and updating by fitted Q
iteration which is more stable than Q(λ)-learning. We should
also note that the S-WF-QLFQI is slightly slower than the
S-WF-QL. A possible reason is that Q(λ)-learning and fitted
Q iteration conflict since the definition of the action value
function is slightly different in the two algorithms.

V. CONCLUSION AND FUTURE WORK

We investigated some applicable RL methods for the
new learning-walking scheme where a humanoid robot is
embedded with a primitive balancing controller. This scheme
has two advantages: (1) the robot can learn in safety, and
(2) the size of the state-action space can be reduced. We
considered a hierarchical RL approach and FA approaches,
and compared them in simulation. The results demonstrated
that Cohen’s hierarchical RL algorithm did not work well;
it took long learning time. On the other hand, the structured
FA was defined for our situation. The RL methods based
on Peng’s Q(λ)-learning could obtain a suitable policy much
faster than the HRL. Especially, applying the combination
of fitted Q iteration and Q(λ)-learning to the structured FA
acquired the best performance. The reason is considered as
both the accuracy of wire-fitting and the stability of fitted Q
iteration.

Though we investigated for the walking task, our findings
are considered to be applicable to similar situations. That
is, for a task where the action space consists of discrete sets
and continuous vector spaces whose selectability depends on
the state, the structured FA approach should be considered
rather than hierarchical RL methods. The hierarchical RL
methods have wider applicability, but in a specific situation,
specialized methods sometimes work more efficiently like
the structured FA.

We did not compare the policy gradient methods in this
paper, since we assumed the value-function-based RL meth-
ods can obtain better policy. However, testing some policy
gradient methods, such as NAC [3], is part of our future
work.

REFERENCES

[1] R. Tedrake, T. Zhang, and H. Seung, “Stochastic policy gradient
reinforcement learning on a simple 3d biped,” in the IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS’04),
vol. 3, 2004, pp. 2849–2854.

[2] H. Kimura, T. Yamashita, and S. Kobayashi, “Reinforcement learning
of walking behavior for a four-legged robot,” in Proceedings of the
40th IEEE Conference on Decision and Control, 2001.

[3] J. Peters, S. Vijayakumar, and S. Schaal, “Reinforcement learning
for humanoid robotics,” in Humanoids2003, IEEE-RAS International
Conference on Humanoid Robots, 2003.

[4] T. Matsubara, J. Morimoto, J. Nakanishi, M. Sato, and K. Doya,
“Learning CPG-based biped locomotion with a policy gradient
method,” Robotics and Autonomous Systems, vol. 54, no. 11, pp.
911–920, 2006.

[5] L. Righetti and A. Ijspeert, “Programmable Central Pattern Generators:
an application to biped locomotion control,” in the IEEE Internactional
Conference in Robotics and Automation (ICRA’06), 2006.

[6] K. Hitomi, T. Shibata, Y. Nakamura, and S. Ishii, “Reinforcement
learning for quasi-passive dynamic walking of an unstable biped
robot,” Robotics and Autonomous Systems, vol. 54, no. 12, pp. 982–
988, 2006.

[7] Y. Nakamura, T. Mori, M. Sato, and S. Ishii, “Reinforcement learning
for a biped robot based on a CPG-actor-critic method,” Neural
Networks, vol. 20, no. 6, pp. 723–735, 2007.

[8] T. Matsubara, J. Morimoto, J. Nakanishi, S. Hyon, J. G. Hale,
and G. Cheng, “Learning to acquire whole-body humanoid CoM
movements to achieve dynamic tasks,” in the IEEE Internactional
Conference in Robotics and Automation (ICRA’07), 2007, pp. 2688–
2693.

[9] A. Yamaguchi, J. Takamatsu, and T. Ogasawara, “Constructing action
set from basis functions for reinforcement learning of robot control,”
in the IEEE Internactional Conference in Robotics and Automation
(ICRA’09), Kobe, Japan, 2009, pp. 2525–2532.

[10] F. Kirchner, “Q-learning of complex behaviours on a six-legged
walking machine,” Robotics and Autonomous Systems, vol. 25, no.
3-4, pp. 253–262, 1998.

[11] J. Morimoto and K. Doya, “Acquisition of stand-up behavior by a
real robot using hierarchical reinforcement learning,” Robotics and
Autonomous Systems, vol. 36, no. 1, pp. 37–51, 31 July 2001.

[12] S. Hyon, J. Hale, and G. Cheng, “Full-body compliant human-
humanoid interaction: Balancing in the presence of unknown external
forces,” Robotics, IEEE Transactions on, vol. 23, no. 5, pp. 884–898,
2007.

[13] S. Hyon, “Compliant terrain adaptation for biped humanoids without
measuring ground surface and contact forces,” Robotics, IEEE Trans-
actions on, vol. 25, no. 1, pp. 171–178, 2009.

[14] A. G. Barto and S. Mahadevan, “Recent advances in hierarchical
reinforcement learning,” Discrete Event Dynamic Systems, vol. 13,
no. 4, pp. 341–379, 2003.

[15] S. Cohen, O. Maimon, and E. Khmlenitsky, “Reinforcement learning
with hierarchical decision-making,” in ISDA ’06: Proceedings of the
Sixth International Conference on Intelligent Systems Design and
Applications. USA: IEEE Computer Society, 2006, pp. 177–182.

[16] J. Peng and R. J. Williams, “Incremental multi-step Q-learning,” in
International Conference on Machine Learning, 1994, pp. 226–232.

[17] D. Ernst, P. Geurts, and L. Wehenkel, “Iteratively extending time
horizon reinforcement learning,” in Proceedings of the 14th European
Conference on Machine Learning, N. Lavra, L. Gamberger, and
L. Todorovski, Eds. Dubrovnik, Croatia: Springer-Verlag Heidelberg,
September 2003, pp. 96–107.

[18] ——, “Tree-based batch mode reinforcement learning,” Journal of
Machine Learning Research, vol. 6, pp. 503–556, 2005.

[19] L. C. Baird and A. H. Klopf, “Reinforcement learning with
high-dimensional, continuous actions,” Wright Laboratory, Wright-
Patterson Air Force Base, Tech. Rep. WL-TR-93-1147, 1993.

[20] M. Sato and S. Ishii, “On-line EM algorithm for the normalized
Gaussian network,” Neural Computation, vol. 12, no. 2, pp. 407–432,
2000.

[21] A. Yamaguchi, J. Takamatsu, and T. Ogasawara, “Constructing
continuous action space from basis functions for fast and stable
reinforcement learning,” in the 18th IEEE International Symposium
on Robot and Human Interactive Communication (RO-MAN’09),
Toyama, Japan, 2009, pp. 401–407.

[22] M. Kawato, “From ‘understanding the brain by creating the brain’
towards manipulative neuroscience,” Phil. Trans. R. Soc. B, vol. 363,
no. 1500, pp. 2201–2214, 2008.

[23] S. P. Singh and R. S. Sutton, “Reinforcement learning with replacing
eligibility traces,” Machine Learning, vol. 22, no. 1-3, pp. 123–158,
1996.

[24] J. N. Tsitsiklis and B. V. Roy, “An analysis of temporal-difference
learning with function approximation,” IEEE Transactions on
Automatic Control, vol. 42, no. 5, pp. 674–690, 1997.


