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ABSTRACT
We investigate a real robot applicability of our method,
general-purpose behavior-learning for high degree-of-freedom
robots in varying environments. Our method is based on the
learning strategy fusion proposed in [3], and extended theo-
retically in [4]. This report discusses its applicability to real
robot systems, and demonstrates some positive experimen-
tal results.
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1. INTRODUCTION
In near future, robots will be used in human daily life

where they are engaged in household chores, supporting and
taking care of humans. In contrast to manufacturing robots,
such robots are required to be more flexible; they need to
adapt to their owners’ requests. One difficult problem is how
the robot finds a policy to achieve a given task. We are tak-
ing reinforcement learning approach which is more general
than planning since it is applicable even if a model of the
system is unknown. Generally to say, it is hard to define a
system model when a robot is working with people. Exam-
ples of reinforcement learning researches are [1, 2]. However,
successful results for complicated systems, especially high
degree-of-freedom (DoF) systems like humanoid robots, are
obtained only when combining with imitation learning.
In contrast, we are tackling to solve the policy learning

problem in a learning-from-scratch case, where no prior in-
formation, e.g. a demonstration trajectory, is given to the
robot. The robot needs to find a policy that maximizes the
sum of rewards encoding task objective.
Especially, we are developing a method for the case where

a robot works in varying environments. So far, we proposed
a method with which (1) a robot can learn a policy quickly
in an environment even if the robot has high DoF, (2) when
the robot does the same task in a different environment, it
can quickly adapt to the new environment, (3) the robot
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Figure 1: Illustration of how the proposed method
works. Each behavior module corresponds a policy.

preserves the policies for each environment, and recalls a
suitable policy for the current environment. The proposed
method for (1) is named Learning Strategy (LS) fusion [3],
and it is extended to achieve (2) and (3) in [4]. An advantage
of our method is that it does not use visual or geometrical
information to recognize an environment, but estimates the
environment by executing learned policies and matching the
observed rewards. Thus, our method is more generally ap-
plicable. However, we have applied it only for a simulated
robot [4].

In this report, in order to show its wider capability, we
investigate the method with the real robots’ task. The ex-
perimental results show that our method works as well as
in the simulation. We believe that these results are benefi-
cial for many researchers to consider applying our method
to many robots’ tasks, including human robot interaction
(HRI) scenarios. The uncertainty of the dynamics increases
when humans are involved in a system, where a change of
user (imagine to share a robot with family) is considered as
a change of environment. Our method has a capability to
treat such a situation.

2. LEARNING STRATEGY FUSION
LS fusion is a general architecture to combining learn-

ing strategies; each learning strategy is a way to generate
a policy. There are different variations of such strategies;
the most simple one is generating a policy for random ex-
ploration when there is no policy for a task. Transferring
strategies are important for efficient learning; sometimes
humans start to learn a policy with slow and restricted
(reduced DoF) movements, then incrementally increase the
speed and DoF of movements. LS fusion is a meta-framework
to fuse such learning strategies. It has a wide applicability,
but the most successful results are obtained when combin-
ing three learning strategies: learning from scratch, accel-



erating a movement, and freeing (increasing) the DoF of a
movement.
The reason why we chose the LS fusion as a basis of the

learning method for varying environments is that since the
best policy for an environment is too specialized to that
environment, a policy in middle-stage of learning sometimes
has a better generalization ability. LS fusion preserves the
past policies in order to get back to them when a transferring
strategy does not work. Thus, LS fusion is suitable for the
extension to varying environments.
The major problem is how to model and estimate an en-

vironment. Rather than using visual or geometrical infor-
mation of an environment, our approach is using learned
policies to test the current environment, then check the cor-
respondence between the learned environment and the cur-
rent environment from rewards observation. The reason of
this approach is that the performance (measured as a sum of
rewards) is only the index to categorize the environments. If
the same policy works well in visually or geometrically differ-
ent environments, these environments should be categorized
into the same class. Thus in our method, a probabilistic
model of the sum of rewards conditioned by a policy and
a environment class is also learned during learning a pol-
icy. This model tells how the current environment is close
to the learned one. Thus, executing test with learned poli-
cies several times, the robot can estimate the class of the
current environment; of course, it can be a new class. Fig. 1
illustrates how the proposed method works.

3. EXPERIMENTS
We investigate the performance of the LS fusion for multi-

ple environments with a real robot task. We employ a spider
robot with 6 legs and engage it in a crawling task. We setup
three different environments as shown in Fig. 2. The reward
of the crawling task is proportional to the forward speed of
the robot; thus, the robot will obtain a crawling motion by
maximizing the sum of rewards. A basic unit of learning
is an episode where the robot starts moving from an initial
pose, and finishes after 50 sec or at some troubles. During
each episode, a policy is updated by Q(λ)-learning at each
action. Policy generation and environment estimation of LS
fusion are executed at the beginning of each episode.
Each trial (run) consists of three learning stages and a test

stage. In 1st stage, the robot starts to learn from scratch
in the plain environment; i.e. the robot does not have any
policies. In this stage, the proposed method works as same
as the LS fusion for a single environment. After learning
ends, the robot is put on the rough environment (2nd stage),
and starts learning with the result of 1st stage. Similarly, in
the 3rd stage, the robot learns on the slip environment. In
the 2nd and the 3rd stages, the robot is expected to use the
learned policies as the starting points. In the 2nd and the
3rd stages, we set the current environment class as unknown
to enforce the environment estimation. In the test stage,
the last result of the 3rd stage is executed in each terrain.
Here, the robot is expected to choose a suitable policy for
the environment.
Fig. 3 shows the results of learning curves and estimated

environment classes. Compare the beginning of the 1st stage
and the 2nd/3rd stage; the sum of rewards of 2nd/3rd stage
is greater. This is because the robot uses policies learned in
the previous stage. In 2nd and 3rd stages, the robot could
estimate the environment classes almost correctly. Fig. 4

Figure 2: Terrains.

Figure 3: Result–1st run: learning curve (sum of re-
wards), environment estimations (diamond points).

Figure 4: Part of fusion tree obtained in the 1st run.

shows the automatically generated behavior modules. As
we illustrated in Fig. 1, the policies were obtained as we
expected. Video is here: http://youtu.be/h3mzPsEnYYc

4. CONCLUSIONS
In this report, we investigated the real robot applicability

of learning strategy fusion extended to varying environments
[3, 4]. Since our method does not use visual or geometrical
information to recognize an environment, we could apply it
to a real robot system with minimum number of sensors.
This advantage will be also beneficial when applying to HRI
scenarios, because this method can treat a change of human
as a change of environment. We need further investigation
of its applicability to HRI scenarios.
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