
Learning Strategy Fusion for Acquiring Crawling Behavior
in Multiple Environments

Akihiko Yamaguchi, Jun Takamatsu, and Tsukasa Ogasawara

Abstract— Though a reinforcement learning method is con-
sidered as a promising method for learning a robot’s behavior
from reward signals and adapting it for unknown environment,
a standard reinforcement learning method is for a single
environment. In this paper, to make a robot working in wider
environments, we develop a reinforcement learning method for
(1) estimating the current environment, (2) choosing a suitable
policy for a known environment, and (3) making learning
efficient when learning in a new environment by using transfer
learning. To achieve them, we extend the learning strategy (LS)
fusion method [1]. LS fusion is a method to learn multiple
policies for a single task by applying multiple learning strategies
(LSs) step by step. The key idea of environment estimation is
using reward statistics of learned policies. For efficient learning,
we design a learning strategy to transfer a policy learned in a
different environment to one for the current environment. To
verify the proposed method, we conducted some experiments
where a small size humanoid robot learned a crawling task in
several kinds of environments.

I. INTRODUCTION

Nowadays, robots are used not only in a manufacturing
purpose, but also in various situations, such as a domestic
and a disaster environment. The robots are considered to
advance to wider environments in the future. For this, we
need to develop methods of robot behaviors for multiple
environments.

To achieve a task in various environments, a robot needs
to adapt to each environment. Since an environment is
unknown to the developer in general, a possible approach
is to learn through trial and error. Reinforcement learning
is a promising machine-learning tool for this purpose [2],
and many applications to robotics are researched (e.g. [3],
[4]). With reinforcement learning, a robot can acquire a
behavior policy through trial and error from reward signals
encoding the task objective. Its advantage is that the model
of environment is not required.

Originally, a reinforcement learning has an ability to
enable a robot to adapt to the environment where the robot
is put. However, using a usual reinforcement learning algo-
rithm, a single policy can adapt to only a single environment
at the same time. If the policy is learned to adapt another
environment, then the policy is not adapted to the original
environment. Of course, the adaptation takes learning cost,
thus, we need an architecture where several policies are
maintained for multiple environments.

Yamaguchi, Takamatsu, and Ogasawara are with Graduate School
of Information Science, Nara Institute of Science and Technology,
8916-5, Takayama, Ikoma, Nara 630-0192, JAPAN {akihiko-y,
ogasawar}@is.naist.jp

Fig. 1. A conceptual diagram of the proposed method.

The purpose of this research is to develop a reinforcement
learning method for multiple environments. Our challenges
are:
(C1) Estimating which the current environment is already

known or new to the robot.
(C2) Executing a suitable policy in an already-known envi-

ronment without additional learning even after learning
in multiple environments.

(C3) Making learning efficient when learning in a new
environment by transferring existing policies learned in
other environments.

Our idea to achieve the challenge (C1) is to use a policy
learned enough (i.e. converged) in an environment. From
the sensory observation of executing a converged policy,
we guess we can judge if the current environment is the
one in which the policy is learned. To do this, naturally,
we need to maintain multiple policies for multiple envi-
ronments. Maintaining multiple policies is also beneficial
to the challenge (C2) and (C3). By preserving policies
for already-known environments when the robot is learning
in a new environment, the robot can recall a preserved
policy when facing an already-known environment. Such
a preserved policy does not require additional learning in
the known environment. In addition, we can generate a new
policy by transferring an existing policy learned in another
environment.

In order to implement these ideas in a sophisticated
manner, we employ the learning strategy (LS) fusion method
[1] as the basis. LS fusion is a method to learn multiple
policies for a single task by applying multiple learning
strategies (LSs) step by step. The learning strategies are, for
example, learning from scratch, and learning a new policy



by transferring another one. The original LS fusion does not
care about the current environment. We extend the LS fusion
method so that the system can maintain multiple policies for
each environment. In addition, we add a new transferring
LS that generates a new policy for the current environment
by copying a policy learned in another environment. A
conceptual diagram of the proposed method is illustrated in
Fig. 1.

We conducted some simulation experiments to verify the
extended LS fusion method where a small size humanoid
robot learns a crawling task in several kinds of environments.
The scenario used in the experiments was: (stage 1) learning
crawling in a floor environment, (stage 2) learning crawling
in a rough terrain environment starting with the acquired
result in stage 1, (stage 3) testing the acquired result of
stage 2 on the floor and the rough terrain. In the results of
(stage 2), the rough terrain was automatically recognized as
an unknown (i.e. a new) environment, and the policies were
learned for the new environment. In the results of (stage 3),
the robot could estimate the environment correctly and recall
the policies for each environment.

Related Works: Tanaka et al. proposed a method to learn
policies through multiple environments [5]. They regarded
learning through multiple environments as learning multiple
tasks. The problem of their method is that the current
environment is not estimated but is given manually as a
learning scenario. In contrast, our method estimates the
current environment using the already learned policies.

Fernández et al. proposed an architecture where a policy
library, i.e. a set of policies, is incrementally learned [6].
This architecture is similar to our method, but they con-
sidered to learn multiple tasks that are defined in the same
domain, i.e. the state space, the action space, and the state
transition probability. In contrast, our method considers to
learn a single task in multiple domains. In addition, it is
not straightforward to apply their method to our situation
by regarding multiple tasks as multiple environments, since
their method does not provide the environment estimation,
unlike our method.

This paper is organized as follows: Section II describes the
problem setup. Section III introduces briefly the LS fusion.
Section IV proposes the extension of LS fusion for multiple
environments. Section V explains the experiments. Finally,
we conclude the paper in Section VI.

II. PROBLEM SETUP

In this section, we describe the problem setup, i.e. assump-
tions of this paper. First, we describe the standard setup of
reinforcement learning, then we mention about our setup.

A. Standard Reinforcement Learning

In a standard reinforcement learning setup, a learning
system (agent) that observes a state x ∈ X and outputs a
control command ũ ∈ Ũ is executed step by step. After
each step, a reward signal r ∈ R is given. The purpose
of reinforcement learning is to optimize the policy of the
agent, i.e. ũ = π(x), which decides how to select a control

command for each state. The policy is optimized so that it
maximizes the expected discounted return, E

[∑
n γ

n−1rn
]

where n denotes the number of steps from the current
state, and γ ∈ [0, 1) denotes a discount factor. Roughly
speaking, the policy is learned to maximize the sum of
rewards expected to be received in future.

An environment can be modeled as a state transition
function which estimates a succeeding state x′ from a current
state x and a control command ũ. In many reinforcement
learning algorithms, such a state transition model is not
explicitly considered, and we need not to specify it to use a
reinforcement learning algorithm.

When using a reinforcement learning algorithm, we need
to manually design a state space X , a control command space
Ũ , and a task. A task is described by a reward function and
conditions of starting and terminating an episode. Here, an
episode means an actual instance of the task. For example
of a crawling task, the state consists of joint angles and a
global position, the control command is target joint angles,
and the reward is proportional to the global velocity.

An example of reinforcement learning algorithms is the
Peng’s Q(λ)-learning algorithm [7], which is an on-line
reinforcement learning method, i.e. the update procedure is
applied after each step. Peng’s Q(λ)-learning is a value-
function-based algorithm, where an action value function
Q(x, ũ) : X × Ũ → R is learned to represent the expected
discounted return by executing a control command ũ from a
state x. Then, the optimal policy is obtained from the greedy
policy π(x) = argmaxũ Q(x, ũ).

B. Setup for Learning Strategy Fusion
In the learning strategy fusion setup [1], we assume that

for a task, multiple pairs of control command and state spaces
are prepared manually, {Ũ1,X1, Ũ2,X2, . . . }. The other setup
is the same as the standard reinforcement learning setup.

Let us think a task of high-DoF (degrees of freedom)
multi-legged robot. Since it is difficult to use high-DoF (e.g.
18) directly for a standard reinforcement learning method,
we usually use a constrained DoF configuration by coupling
and fixing some actuators. Of course, a suitable DoF con-
figuration is different among the tasks. Thus, in the setup
of learning strategy fusion, we prepare several kinds of
DoF configurations; then the method automatically choose a
suitable DoF configuration for a task. In addition, the method
enables the robot to start learning a policy with a low-
DoF configuration and improve the policy by incrementally
increasing the DoF configuration.

In this paper, we consider multiple environments, but we
assume that the observation and the control command do not
change. That is to say, there are several state transition func-
tions for each pair of control command and state spaces. Of
course, we do not give the information of each environment
to the robot.

III. LEARNING STRATEGY FUSION (LS FUSION)
This section briefly explains the learning strategy (LS)

fusion method [1]. The key point of LS fusion is the ab-
straction of learning strategies, which achieves the automatic



and multiple application of learning strategies. The features
of LS fusion are summarized as follows:
▶ The system maintains multiple policies. Each policy is

called as a behavior module, which contains a learning
algorithm (e.g. Q-learning) and its parameters. The set of
the behavior modules maintained by the system is called
as a behavior set.

▶ A learning strategy is defined as a generator of a behavior
module. It generates a behavior module from specified
information: a label of task, a control command space, and
a state space. A learning strategy may generate a behavior
module by transferring another behavior module. Learning
strategies are prepared manually.

▶ For a task, multiple pairs of control command and state
spaces are prepared manually.

▶ The system can start with no behavior module in the
behavior set.

▶ In the beginning of every episode, behavior modules are
generated automatically by applying learning strategies.

▶ After the generation of the behavior modules, a behavior
module that is actually executed in the episode is selected
from the behavior set and the newly generated behavior
modules. Only when the selected behavior module is new
one, it is appended into the behavior set.

▶ In the selection of behavior module, statistical data of
reward (reward statistics) is used to measure the perfor-
mance of each behavior module. Intuitively, the previously
obtained return (sum of rewards in an episode) indicates
the performance of a behavior module.

The LS fusion algorithm can use any learning strategies that
satisfy the above definition; but in order to obtain a good
learning result, a better combination of learning strategies
should be considered. The learning strategies used in [1] are:

LS-scratch generates a behavior module that learns a task
from scratch.

LS-accelerating generates a behavior module by accelerat-
ing the motion of a source behavior module. This is a
kind of transfer learning.

LS-freeing generates a behavior module by increasing the
DoF of a source behavior module. This is a kind of
transfer learning.

Let us think an example of a crawling task of a humanoid
robot; this task is used in the experiments of [1]. In order to
observe the generated behavior modules, we use a fusion tree.
Fig. 2 is an example of the fusion tree at the end of learning
crawling, where each circle shows a behavior module and
each arrow shows a transfer relation of behavior modules.
In this fusion tree, behavior modules labeled “B(∗)-cr-S∗”
(∗ denotes a wild character) are generated by LS-scratch in
the early stage of learning. The rest of behavior modules are
generated by LS-accelerating and LS-freeing. Among “B(∗)-
cr-S∗”, arrows start only from “B(3)-cr-S20” (a behavior
module with the 3-DoF configuration), which means “B(3)-
cr-S20” is superior to the other behavior modules generated
by LS-scratch. In the final stage of learning, “B(16)-cr-A338”
is the behavior module that is selected most frequently.

Fig. 2. Fusion tree that shows the generated behavior modules and the
transfer relations of the behavior modules. This graph corresponds with the
behavior modules in the conceptual diagram Fig. 1. Each circle denotes a
behavior module where a label “B(DoF)-cr-LS#” is unique for the module;
DoF: the DoF setup, cr: the task label, LS#: the learning strategy LS used
to generate the module (S: LS-scratch, A: LS-accelerating, F: LS-freeing)
and the unique ID #. Each arrow denotes a transfer relation which indicates
generating a behavior module from other one. A label “A” denotes LS-
accelerating, and “F(#1→#2)” denotes LS-freeing from the DoF #1 to #2.
A behavior module with a dotted circle (in this figure, “B(16)-cr-A338”)
denotes the behavior module that is selected most frequently in the final
stage of learning.

Tracing arrows from “B(3)-cr-S20” to “B(16)-cr-A338”, we
find that the transfer LSs, the both of LS-accelerating and LS-
freeing, are used multiple times. The performance of policy
increases along with the behavior modules between these
two. On the other hand, “B(16)-cr-A353” generated from
“B(16)-cr-A338” by LS-accelerating is inferior to “B(16)-
cr-A338”. To interpret these results intuitively, we can say
that in the early stage, a policy is learned with a low-DoF
and a low-speed configuration, then the policy is improved
incrementally by accelerating the motion and freeing the
DoF.

The entire algorithm is shown in Algorithm 1. The details
of the method is described in the appendix.

IV. LS FUSION FOR MULTIPLE ENVIRONMENTS

In this section, we extend the LS fusion method to learn
policies in multiple environments. As mentioned in Section I,
the challenges are: (C1) estimating the current environment,
(C2) choosing a suitable policy for a known environment,
and (C3) making learning efficient when learning in a new
environment by using transferring.

The main idea is to use a policy learned enough (i.e.
converged) for environment estimation. In the LS fusion
method, each behavior module has its own reward statistics.
In an unknown environment, by executing a converged policy
and comparing the observed return (sum of rewards) and the
reward statistics, we can judge if the current environment is



Algorithm 1: Learning strategy fusion

Input:the behavior set B (B can be empty)
1: for each episode do
2: clear the set of newly generated behavior modules:
Bnew ← {}

3: for each command and state space (Ũ ,X ) do
4: for each learning strategy LS do
5: generate a set of behavior modules for (Ũ ,X ) with LS

and append them to Bnew:
Bnew ← Bnew ∪ GEN(Ũ ,X ,B;LS)

6: select Bnext from {B|B∈B∪Bnew} according to the reward
statistics of each behavior module B

7: if Bnext∈Bnew then B ← B ∪ {Bnext}
8: limit the size of B
9: perform the episode with the policy of Bnext in an on-line

reinforcement learning manner:
for each step n, select a command ũn from a state xn with
the current policy, execute ũn, observe a reward rn and the
next state xn+1, update the policy; repeat until the episode
ends

10: update the reward statistics of Bnext according to the return
of the episode (r1 + r2 + . . . )

the one in which the policy is learned. By repeating such a
test in several times, we can identify the current environment.

Introducing this environment-estimation method into LS
fusion, the challenges (C1) and (C2) are achieved. For the
challenge (C3), we design a learning strategy, LS-copying,
which generates a behavior module by simply copying a
policy from another behavior module learned in the other
environment. LS-copying is very simple, but using it with
LS fusion provides the following benefits: (1) in learning
in a new environment, several candidate behavior modules
for copying learned in other environments can be tested,
which increases the possibility of finding a better source
behavior, and (2) the other transferring learning strategies
(LS-accelerating and LS-freeing) can be additionally applied
to the copied behavior module as the standard LS fusion
manner, which helps to acquire a better policy.

The rest of this section describes the details of this method.

A. Environment Estimation

In order to achieve the above ideas, we designed the
environment estimation as follows:
▶ For a return observed through executing a behavior module

whose policy is assumed to be converged, we compute
the Mahalanobis distance of the return over the reward
statistics of the behavior module. If the result is smaller
than a constant threshold (e.g. 2.0), the environment is
considered to be the one in which the behavior module is
learned.

▶ When a behavior module is executed in a known environ-
ment, if the Mahalanobis distance of the observed return
is greater than the threshold, the current environment is
immediately labeled as unknown.

▶ When the current environment is unknown, the current
environment is identified as follows:

Algorithm 2: LS fusion for multiple environments

Input:behavior set B (B can be empty),
current environment label E (E can be unknown),
number of known environments Nenv (Nenv can be zero)

1: for each episode do
2: if E = unknown then
3: if E is considered to be a new environment then
4: create a new environment label:

E ← new-label, Nenv ← Nenv + 1
5: if E ̸= unknown then
6: generate new behavior modules and select Bnext in the

manner of the original LS fusion algorithm (note that
Bnext must satisfy Bnext.E = E)

7: else /∗ E = unknown ∗/
8: select Bnext from {B|B∈B, B is converged, the tested

counter of B.E is less than threshold} according to the
reward statistics of each behavior module B

9: perform the episode with the policy of Bnext in an on-line
reinforcement learning manner; the policy is updated if E ̸=
unknown , is not updated otherwise

10: if E = unknown then
11: increment the tested counter of Bnext.E
12: if the current environment is considered to be Bnext.E

then
13: increment the matched counter of Bnext.E
14: if the matched counter of Bnext.E is greater than

threshold then
15: E ← Bnext.E
16: else /∗ E ̸= unknown ∗/
17: if Bnext is converged and the current environment is

considered to be not Bnext.E then
18: E ← unknown
19: if E ̸= unknown then
20: update the reward statistics of Bnext according to the

return of the episode (r1 + r2 + . . . )

Note: B.E denotes the environment in which the behavior module
B is learned.

▶ Several behavior modules whose policies are converged
are executed in several times. After each execution, if
the environment is considered to be the one in which
the executed behavior module is learned, the matched
counter of the environment is incremented by one.

▶ If the matched counter of an environment is greater than
a threshold (e.g. 1), the current environment is identified
as that environment.

▶ If every environment is tested more than a specified
number of times (e.g. 3), the current environment is
assumed to be a new one. For this purpose, tested
counter is maintained for each known environment.

These approaches are pretty simple, but we consider they are
enough to verify our ideas.

The algorithm of LS fusion for multiple environments is
shown in Algorithm 2.

B. Learning Strategies

The existing learning strategies, LS-scratch, LS-
accelerating, LS-freeing, are modified to consider the
current environment. Specifically, LS-scratch is allowed
to generate a behavior module of the same setup with an



Fig. 3. Simulation model of a humanoid robot.

existing behavior module if the existing one is for a different
environment. Meanwhile, LS-accelerating and LS-freeing
are allowed to transfer only the behavior modules learned
in the same environment.

In addition, a new learning strategy, LS-copying, is de-
signed. This strategy simply copies a behavior module for a
different environment to a behavior module for the current
environment. This is done by copying the parameters of the
policy.

V. EXPERIMENTS

In this section, we apply the extended LS fusion to a
crawling task of a humanoid robot on multiple kinds of
terrains. Fig. 3 shows the simulation model of the robot, and
Fig. 4 shows the simulation models of the terrains; a floor
and a rough terrain are prepared. As Fig. 3, we use a small
size humanoid, its height is 0.328m, and it weighs 1.20kg.
Each joint torque is limited to 1.03Nm, and a PD-controller
is embedded on it. The following experiments are performed
on a dynamics simulator, ODE1, with a time step 0.2ms. The
extended LS fusion is implemented with the reinforcement
learning library, SkyAI2.

For the state and the command spaces, we prepare six DoF
configurations: 3-DoF, 4-DoF, 5-DoF, 6-DoF, 7-DoF, and 16-
DoF. Originally, the robot has 17-DoF; these configurations
are made by coupling some joint pairs and fixing some
joints. In ND-DoF configuration, its command input space
is a ND-dimensional vector space that represents target joint
angles. Its state space consists of the corresponding joint
angles, the position and rotation of the body link, and their
velocities. The default basis functions to approximate over
the continuous state spaces are prepared for the 3, 4, 5, 6, and
7-DoF configurations; on the other hand, we do not prepare
basis functions for the 16-DoF configuration since the DoF is
too large. The possible freeing directions between these DoF
configurations are: 3→5, 3→6, 3→7, 3→16, 5→6, 5→7,
5→16, 6→7, 6→16, 7→16, and 4→16. These are the same
as [1]; please refer to it for the detail.

A. Learning Scenario

We perform the experiments under the following scenario:
Stage 1. Learning in the floor environment.

1Open Dynamics Engine: www.ode.org
2SkyAI: skyai.org

(a) Floor. (b) Rough terrain.
Fig. 4. Simulation models of two terrains.

Stage 2. Learning in the rough terrain environment starting
with the acquired result in stage 1.

Stage 3. Testing the acquired result of stage 2 in the floor
and the rough terrain environment.

In stage 2 and 3, we start the extended LS fusion with
the current environment label as unknown. In the beginning
of stage 2, we expect that the extended LS fusion detects
the current environment as a new one and starts to learn
new policies where LS-copying is used to generate behavior
modules from the existing behavior modules learned in stage
1. In stage 3, the known environments are considered to be
two; we expect that the extended LS fusion identifies the
current environment and executes a suitable behavior module
for that environment.

B. Task Setup

The objective of the crawling task is to move forward as
fast as possible. According to the objective, the reward is
designed as follows:

r(t) = rmv(t)− rrt(t)− rsc(t)− rfd(t) (1)

where rmv(t) = 50(ċ0x(t)ez1(t) + ċ0y(t)ez2(t)), rrt(t) =
5|ωz(t)|, rsc(t) = 2 × 10−5∥ũ(t)∥; rmv(t) is a reward for
forward movement, (ez1, ez2, ez3)⊤ is a z-component of the
rotation matrix of the body link, rrt is a penalty for rotation,
rsc(t) is a step cost, rfd(t) is a penalty for falling down.
rfd(t) takes 4 if the body or the head link touches the ground,
otherwise it takes 0. The penalty for falling down is given
once in each action. Each episode begins with the initial
state where the robot lies down and stationary, and ends if∫ t

0
r(t′)dt′ ⩽ −40 or t > 20[s].

C. Learning Method Configurations

We choose the parameters of LS fusion as follows: fUCB =
2, αR = 0.05, τlsd0 = 20, δτlsd = 0.004, σth = 0.2, and
faccel = 0.95. The threshold of matched counter is 1, the
threshold of tested counter is 3, and the threshold of the
Mahalanobis distance of the observed return is 2.0. Every
behavior module uses WF-DCOB [3] and Peng’s Q(λ)-
learning [7] with γ = 0.9, λ = 0.9, and a decreasing step
size parameter α = 0.3 exp(−0.002NepsB).

As a comparison, we also apply WF-DCOB with the 5-
DoF configuration for the learning scenario. In the learning



Fig. 5. Results of LS fusion for multiple environments. A solid curve shows
a learning curve, i.e. the sum of rewards per each episode. A dotted curve
shows the index of estimated environment per each episode; especially, −1
indicates unknown. The left three graphs show the results in stage 1 and 2,
and the right three graphs show the results in stage 3. Each row is obtained
in a learning scenario; they are referred to as ex1, ex2, ex3 respectively.

scenario, a policy is used in common through the stages. The
policy is learned from scratch at stage 1, and the policy at
the end of stage 1 is used as the starting line of stage 2;
finally, the policy at the end of stage 2 is used in stage 3.

D. Results and Discussion

We conducted the learning scenario three times for each
condition. Fig. 5 shows the results of LS fusion for multiple
environments where the learning curves and the estimated
environment per each episode are plotted. Fig. 6 shows the
result of WF-DCOB with the 5-DoF configuration where
only the learning curves are plotted. Fig. 7 shows the fusion
tree of ex1 of Fig. 5 at the end of stage 2. Fig. 8 shows the
snapshots of the crawling motions in stage 3 of Fig. 5 ex1.

The most important result is that the extended LS fusion
could recognize the rough terrain environment as a different
environment from the floor; we can find it in the stage 2
of Fig. 5. As the result, new behavior modules were created
to learning policies for the new environment. In the fusion
tree Fig. 7, we can find the behavior modules both for the
floor and the rough terrain environment. However, the result
is not completely as we have expected. For example, in ex3
of Fig. 5, two environments are newly created in stage 2.
Look around 3000th episode of the graph; the estimated
environment becomes unknown during small episodes, then
the current environment is estimated as a new one. From the
learning curves, it is apparent that learning crawling on the

Fig. 6. Results of WF-DCOB; refer to the Fig. 5’s caption.

Fig. 7. Fusion tree of ex1 in Fig. 5. The notation is almost the same as
Fig. 2, but the differences are the arrow labeled “C” denoting LS-copying
and the label of a behavior module, “B[Env](DoF)-cr-LS#” where Env is
the index of the environment for which the policy of the behavior module
is learned.

rough terrain is much noisier than that on the floor. Thus, we
guess that the environment estimation failed in ex3 of Fig. 5.

Similarly, in stage 3 of Fig. 5 ex1 and ex2, the environment
was correctly estimated. On the other hand, in stage 3 of
Fig. 5 ex3, the estimated environment on the rough terrain
was different from ones experienced in the previous stages.
We consider that this reason is the same as the case of stage
2.

About the experiments of WF-DCOB, we had thought that
in stage 2, the policy learned on the floor would adapt the
rough terrain, which would be no longer adapted to the floor
environment. Thus, we had predicted that testing the policy
on the floor in stage 3 would result worse than that at the
end of stage 1. Fig. 6 ex3 is as we had expected, but ex1 and
ex2 are not. Rather than resulting worse, the performance is



(a) Crawling on the floor.

(b) Crawling on the rough terrain.
Fig. 8. Snapshots of the crawling motions in stage 3 of Fig. 5 ex1, taken
in 2-FPS (frame per second). These snapshots were taken after the current
environment was estimated.

improved from that at the end of stage 1. A possible reason
is that the policy converged to a local maximum in stage 1,
then the policy was modified in stage 2, which became a
trigger to escape from the local maximum and acquire other
(better) solution to learning crawling.

Let us compare Fig. 5 with Fig. 6. In spite of learning
new policies on the rough terrain in Fig. 5 stage 2, there
seems to be no big difference between Fig. 5 and 6 in terms
of learning speed. The reason is considered to be that LS-
copying helped the new behavior modules to learn policies
quickly by copying policies learned in stage 1.

VI. CONCLUSION

In this paper, we extended the learning strategy (LS)
fusion method for multiple environments. The challenges are
estimating the current environment, choosing a suitable pol-
icy for a known environment, and making learning efficient
when learning in a new environment by using transferring.
The environment estimation was achieved by using reward
statistics of learned policies. For efficient learning, a learning
strategy LS-copying was designed to transfer a policy learned
in a different environment to one for the current environment.

In order to verify the proposed method, we conducted
some experiments where a small size humanoid robot learned
a crawling task in several kinds of environments. First, the
robot learned crawling in a floor environment, then in a
rough terrain environment. Finally, the learning result was
tested in these environments again. Though the environment
information was not told to the robot in every case, the en-
vironment was estimated by the extended LS fusion method.
For known environments, suitable policies were chosen. In

addition, LS-copying made learning a new policy efficient
when transferring was available.

APPENDIX

This appendix describes the details of the LS fusion
method introduced in Section III.

A. Reward Statistics and Behavior Selection

Each behavior module maintains its own reward statistics
which is used to measure the performance of the policy of
the behavior module and to judge if the policy converges.
In order to measure the performance of a policy, using a
return, i.e. the sum of rewards in an episode, seems to be
appropriate. However, usually a return is affected by a noise
coming from the environment or an exploration. Thus, we
apply a moving average filter to the sequence of the returns
in an on-line manner, and use the latest output of the filter as
the measurement of the performance. Specifically, for each
behavior module B, its performance RB is initialized by zero
and updated by

RB ← αRR+ (1− αR)RB , (2)

where R denotes the last return. Actually, for a continuing
task, such as a crawling task, we define R as the sum of
rewards divided by the total duration of the episode. αR is
a step size (e.g. 0.05).

In order to judge the convergence of a policy, we use a
standard deviation of the latest returns. RB is considered to
be a mean of the latest returns; the corresponding standard
deviation σB can be computed as follows: initialize R2

B by
zero, and update it by

R2
B ← αRR

2 + (1− αR)R2
B . (3)

Then, the standard deviation is calculated by σB = (R2
B −

R
2

B)
1/2. If σB is small, it is considered that the policy

converged. Since σB depends on the range of the returns,
it is not intuitive to determine a threshold of σB for the
convergence judgment. Thus, we set a threshold of σB

divided by its maximum value σmaxB . Specifically, we judge
the convergence of a policy by checking if σB/σmaxB is
smaller than a threshold (e.g. 0.2).

As shown in Algorithm 1, the selection of a behavior
module Bnext that is actually executed in the current episode
is done in the beginning of each episode. We want to
choose a module that has not only a high performance,
but also an expectation of improvement. The expectation of
improvement can be evaluated by σB . Thus, we select a
behavior module based on the sum of the performance RB

and the improvement expectation σB:

RUCBB ≜ RB + fUCBσB , (4)

where fUCB is a real constant value that decides the weight
of expected improvement (e.g. 2.0). This quantum is called
as the upper confidence bound (UCB). In order to select
probabilistically a behavior module based on UCB, we apply
the Boltzmann selection method.



B. WF-DCOB

Before describing the learning strategies, we introduce
WF-DCOB [3], which is a method for reinforcement learning
in a continuous state and a continuous action domain. WF-
DCOB is designed to be efficient in a learning-from-scratch
case, which means an agent starts learning with a completely
random policy. WF-DCOB is based on the Q(λ)-learning
algorithm [7] as the reinforcement learning method; it is
based on wire-fitting [8] and the normalized Gaussian net-
work (NGnet) (e.g. [9]) as the function approximation over
the continuous state-action space. Q(λ)-learning is a standard
reinforcement learning algorithm with eligibility trace, wire-
fitting is an interpolation method for the continuous action
space, and NGnet is a regression model with basis functions
for the continuous state space. The learning strategies de-
scribed in this paper do not care about the detailed algorithm
of WF-DCOB; rather than that, they care only the parameters
of WF-DCOB that encode the policy. The parameters of WF-
DCOB include ones related to the speed of motion and ones
related to the action (an action is target joint angles, in the
following experiments).

C. Learning Strategies

A learning strategy is a generator of a behavior module.
It generates a behavior module from specified information: a
label of task, a control command space Ũ , and a state space
X . The common features of the learning strategies are:
▶ Each learning strategy can generate any number of mod-

ules.
▶ A learning strategy may generate a behavior module by

transferring another behavior module.
▶ Generating a behavior module of the same setup with an

existing behavior module is inhibited in order to avoid to
generate too much number of behavior modules.

▶ The transferring processes of LS-accelerating and LS-
freeing are done in rough manners; the generated behavior
modules are not optimal for the robot. However, this is
no problem since the generated behavior modules are
additionally learned in the succeeding episodes.
1) LS-scratch: LS-scratch generates a behavior module

whose reinforcement learning method is WF-DCOB and the
parameters of its policy are initialized in the learning-from-
scratch manner. LS-scratch does not generate a behavior
module if there is a behavior module that is generated by
LS-scratch and is learning in the same Ũ and X .

2) LS-accelerating: LS-accelerating generates a behavior
module by transferring an existing behavior module. The
source behavior module should be learning in the same Ũ
and X , and its reinforcement learning method should be WF-
DCOB. The parameters of the source behavior’s policy are
transferred as follows: ones related to the speed of motion
are accelerated, actually a constant value is multiplied, and
ones related to the action are copied without change. LS-
accelerating does not generate a behavior module if there is
a behavior module that is generated by LS-accelerating with
the same source behavior module.

3) LS-freeing: LS-freeing generates a behavior module
by transferring an existing behavior module. A freeing re-
lation should be defined between the given (Ũ ,X ) and the
source behavior’s (Ũ ,X ). The freeing relation determines
the conversion between two spaces, which is derived from
the definitions of the control command and state spaces. In
addition, the reinforcement learning method of the source
behavior module should be WF-DCOB. The parameters of
the source behavior’s policy are transferred as follows: ones
related to the speed of motion are copied without change,
and ones related to the action are converted with the freeing
relation. LS-freeing does not generate a behavior module if
there is a behavior module that is generated by LS-freeing
with the same source behavior module.

REFERENCES

[1] A. Yamaguchi, J. Takamatsu, and T. Ogasawara, “Learning strategy
fusion to acquire dynamic motion,” in the 11th IEEE-RAS International
Conference on Humanoid Robots (Humanoids’11), Bled, Slovenia,
2011, pp. 247–254.

[2] R. Sutton and A. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA: MIT Press, 1998.

[3] A. Yamaguchi, J. Takamatsu, and T. Ogasawara, “DCOB: Action space
for reinforcement learning of high dof robots,” Autonomous Robots,
vol. 34, no. 4, pp. 327–346, 2013.

[4] J. Kober, A. Wilhelm, E. Oztop, and J. Peters, “Reinforcement learning
to adjust parametrized motor primitives to new situations,” Autonomous
Robots, vol. 33, pp. 361–379, 2012, 10.1007/s10514-012-9290-3.

[5] F. Tanaka and M. Yamamura, “An approach to lifelong reinforcement
learning through multiple environments,” in Proceedings of the 6th
European Workshop on Learning Robots (EWLR-6), 1997, pp. 93–99.

[6] F. Fernández, J. Garcı́a, and M. Veloso, “Probabilistic Policy Reuse
for inter-task transfer learning,” Robotics and Autonomous Systems,
vol. 58, no. 7, pp. 866–871, 2010.

[7] J. Peng and R. J. Williams, “Incremental multi-step Q-learning,” in
International Conference on Machine Learning, 1994, pp. 226–232.

[8] L. C. Baird and A. H. Klopf, “Reinforcement learning with high-
dimensional, continuous actions,” Wright Laboratory, Wright-Patterson
Air Force Base, Tech. Rep. WL-TR-93-1147, 1993.

[9] M. Sato and S. Ishii, “On-line EM algorithm for the normalized
Gaussian network,” Neural Computation, vol. 12, no. 2, pp. 407–432,
2000.


