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Abstract— We explore manipulation strategies that use
vision-based tactile sensing. FingerVision is a vision-based
tactile sensor that provides rich tactile sensation as well as
proximity sensing. Although many other tactile sensing methods
are expensive in terms of cost and/or processing, FingerVision
is a simple and inexpensive approach. We use a transparent
skin for fingers. Tracking markers placed on the skin provides
contact force and torque estimates, and processing images
obtained by seeing through the transparent skin provides static
(pose, shape) and dynamic (slip, deformation) information.
FingerVision can sense nearby objects even when there is
no contact since it is vision-based. Also the slip detection is
independent from contact force, which is effective even when the
force is too small to measure, such as with origami objects. The
results of experiments demonstrate that several manipulation
strategies with FingerVision are effective. For example the robot
can grasp and pick up an origami crane without crushing it.
Video: https://youtu.be/L-YbxcyRghQ

I. INTRODUCTION

We explore the use of a vision-based tactile sensor Fin-
gerVision [1] in robotic manipulations. FingerVision is a
simple, physically robust, and inexpensive tactile sensor. Al-
though some sensing modalities of FingerVision are inferior
to that of humans, FingerVision provides other modalities
that humans cannot perceive. We develop four manipulation
strategies with FingerVision: gentle grasping (grasping with
a small force), holding (controlling a gripper to avoid slip),
handover (opening a gripper when passing an object to a
human), and in-hand manipulation (changing the orientation
of an object without releasing it).

The conceptual illustration of FingerVision is available in
[2]. It consists of a transparent soft layer with markers on the
surface, a transparent hard layer, and cameras. By tracking
the markers on the surface of the skin, we can estimate the
contact force distribution. The camera can see through the
skin since the skin is transparent. Analyzing the image gives
us information about nearby objects (proximity sensing).
We present methods for proximity sensing that provide slip
detection, object detection, and object pose estimation. Slip is
detected as a set of moving points on the object in an image.
Since our slip detection is vision-based, it can sense slip even
when the object is very lightweight, such as grasping origami
objects.

We also emphasize that in contrast to expensive tactile
sensing technologies, such as the BioTac sensor [3], Fin-
gerVision is simple (making a sensor is easy and inexpensive,
and force estimation and proximity vision are done by
combining OpenCV (http://opencv.org/) functions),
but it is still useful for robotic manipulations. We are working
on making our technology open source [2] so that many
projects can consider FingerVision as a tactile sensor.
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Fig. 1. Examples of tactile behaviors using FingerVision. Three images
from left: picking up an origami crane. Right: handover activated by slip.

Recently using deep learning for robotic grasping has
become popular [4], [5], [6]. In these studies, tactile sensing
was not used. Vision-based grasping was possible because
there is a consistent relation between the state (visual infor-
mation) before grasping including the grasping parameters
and the outcome of grasping. Tactile sensing is intermediate
information, which is not necessary to use in learning grasp-
ing behavior. However tactile perception is useful in many
manipulation scenarios, such as, grasping a container whose
contents are unknown, and manipulating objects whose sur-
face friction is unknown. Tactile sensing should make robotic
manipulation more robust and reduce the number of samples
needed to learn.

We tested several manipulation strategies with many dif-
ferent objects. The behaviors worked well. Remarkable re-
sults are: grasping a paper business card on edge and passing
it to a human without bending it, holding a marshmallow
being pulled on by a human, and picking up an origami
crane without crushing it (Fig. 1).

Related Work

Slip detection has decades of research. An approach to
use acoustic signals caused by slip was explored in [7]. A
popular approach is using the vibration caused by slip [8],
[9], [10], [11], [12], [13]. Some vibration approaches used
accelerometers [9], [12]. Approaches to create a mechanism
for making slip-detection easier are considered in [9] (soft
skin with a texture), [8] (soft skin covered with nibs), and
[11] (a flexible link structure). In [14], [15], [16], they
analyzed an observed force (and torque) to detect slip. Many
studies detect slip by using a distributed sensor array [17],
[18], [19]. In [19], 44x44 pressure distribution is converted
to an image, and slip is detected by an image processing.
In [20], a multi-sensor fusion approach was proposed where
they combined stereo vision, joint-encoders of the fingers,
and fingertip force and torque sensors. In [21], they devel-
oped slip detection using center-of-pressure tactile sensors.
Some researchers use the BioTac sensor [3]. In [22], two
BioTac sensors are used and several strategies to detect slip
are compared experimentally. BioTac sensors are also used in
[23], where they developed three types of tactile estimation:
finger forces, slip detection, and slip classification. Similar
to ours, [24], [25], [16] take a vision-based approach to
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detect slip. The sensor proposed in [16] provides a high-
resolution force array, and slip detection with it. Unlike
ours, [16] covered the skin with an opaque surface. Our
approach is simpler than many of above studies, but is robust
since proximity vision gives a direct measurement of the
grasped object pose and movement. Our slip detection does
not depend on contact force estimation, but uses a direct
measurement of object movement obtained by vision. This
is possible because our sensor has a highly transparent skin
unlike other vision-based tactile sensors (e.g. [26], [16]).
Therefore it is applicable even when the contact force is too
small to measure. Relative object pose estimation is also a
unique feature of our approach, and we have found it useful
for many behaviors.

There is a huge literature on human grasping and slip
detection. Recent surveys are [27] and [28]. An important
early work on the role of slip in human grasping is [29]
which describes a holding behavior where grip force is
increased when slip is detected. In addition to launching the
field, this work eventually led to the design of the BioTac
sensor [3]. Recent papers following up on this work include
[30], which discusses how to hold very light objects, and
[31], which discusses how grip force is increased during arm
movements. [32] discusses the effects of object inertia and
gravity on the selection of grip force. [33] reviews human
grip responses to perturbations of objects during precision
grip. [34] studies human to human handover behaviors.

Creating robotic manipulations with tactile sensing is also
studied. A human-like gentle grasp without slip and crush
was proposed in [15]. A grasping strategy using slip detection
is studied in [35]. [23] created a behavior to gently pick
up objects where they combined finger force estimates, and
slip detection and classification. Some work focused on
grasp control for avoiding slip [8], [24] where they used
slip detection. A more complicated task was considered
in [20] where they used slip detection in a peg-in-hole
task. [19] made a method to estimate a contact area and
slip, and in-hand manipulation with it. Our study presents
different approaches of manipulations with tactile sensing. It
is especially remarkable that the use of slip to grasp a light-
weight fragile object (e.g. origami crane) where the contact
force is too small.

II. GRASPING STRATEGIES WITH FINGERVISION

We have created several manipulation strategies using
force estimation and proximity vision of FingerVision: Gen-
tle grasping: Grasping an object gently by using force
estimation. This is useful when grasping a fragile object.
Holding: Controlling the gripper to avoid slip. This is
especially useful when grasping a deformable and fragile
object. It is also effective for grasping light-weight fragile
objects. Handover: Opening the gripper when a force change
or slip is detected. This is useful when passing an object to
humans. In-hand manipulation: Change the orientation of
a grasped object by repeatedly relaxing and tightening the
gripper based on the slip estimate. In order to demonstrate
the usefulness of FingerVision, we present examples of these
manipulations. For simplicity, we use position control of our
grippers. In the following behaviors, a small movement of
the grippers means a position command to create a minimum
movement.

A. Gentle Grasping

The behavior is closing the gripper until one of the
FingerVision sensors on the fingers senses a sufficient contact
force. FingerVision provides an array of forces (each marker
gives 3-dimensional force estimate [fx, fy, fz]). Rather than
using an average force or torque to detect a small force,
detecting a small force on each marker is better in this
scenario. For robustness against marker tracking noise, we
programmed force tracking as follows: We categorize |fy|
(norm of the normal force) into 4 types: noise level, sufficient
contact force, medium force, large force, and give scores 0,
1, 3, 5 respectively. Manually defined thresholds are used in
this categorization. We defined the condition to stop closing
the gripper as that the sum of the scores of the array exceeds
a threshold (7 worked well in our experiments).

B. Holding

The behavior is that the robot slightly closes the gripper
when the FingerVision sensors sense slippage, otherwise no
action is performed by the gripper. For slip detection we use
the number of moving points on the object in the image. If
the number exceeds a threshold, it is recognized as a slip
event.

Note that the holding strategy enables a robot to grasp very
light-weight fragile objects such as origami. The idea is that
if there is not enough friction between the object and the
fingers, the object will slip when the robot moves the hand.
Using the holding strategy until there is no slip, the robot
will be able to move the object without slip. This approach
is applicable even when force estimation cannot sense the
contact force from the object. Thus this could be a strategy
to grasp light-weight fragile objects.

C. Handover

We assume that the gripper already grasps an object, i.e.
there are forces applied to the FingerVision sensors. For
force change detection, we compare the force estimate on
each marker with its initial value. We count the number
of markers where a difference between those two values
exceeds a threshold. The force change is defined as a flag
which is “on” when the number is greater than a threshold
(e.g. 5). The slip detection is the same as that used in the
holding behavior.

D. In-hand Manipulation

We assume that the gripper already grasps an object. The
robot repeats the following process until the target angle is
achieved. The robot slightly opens the gripper until if senses
a small slip. Since there would be a small delay between the
gripper motion and slippage, we insert a short waiting time
(0.1 s) after each gripper command. The method to detect slip
is the same as that in the holding behavior, but the threshold
is halved (i.e. more sensitive). After a short waiting time or
when slip is detected, the robot closes the gripper until slip
is not detected.

III. PROXIMITY VISION

Proximity vision processes an image to obtain information
about nearby objects, such as object colors, textures, shape,
position and orientation, movement including slippage, and
deformation. This paper focuses on approximate detection of
an object and its movement. Simple approaches to detecting
movement are optical flow and background subtraction.



Fig. 2. An example of the comparison of three functions.

Movement detection involves detecting movement of the
environment and the robot body. For example when moving
the robot arm, the camera in FingerVision will capture
background change. Operating the gripper also causes back-
ground change. We need to distinguish the movement of an
object from background change. We developed a detection
and tracking method for an object, as well as movement
detection.

For simplicity, we model an object with a histogram
of colors. In most grasping scenarios, a robot gripper ap-
proaches an object, or another agent passes an object to
the gripper. In both cases, the object is seen as a moving
object in the cameras of FingerVision. Thus, we design the
object detection and tracking as follows. First we create a
background model as a histogram of colors. At the beginning
of grasping, we detect moving blobs in the image, compute
a histogram of colors of the moving pixels, and subtract the
background histogram. The remaining histogram is added to
the object model. In the tracking phase, we apply the back
projection of the object histogram to the current frame, and
thresholding to detect the object. We describe more details
in the following.

A. Movement Detection

We found that optical flow and background subtraction
are good at detecting changes in a sequence of images. We
compared three implementations based on functions
in OpenCV, applying cvCalcOpticalFlowLK

to raw images, cvCalcOpticalFlowLK to
edge images detected by the Sobel filter, and
cv::BackgroundSubtractorMOG2 to raw images. In
many cases, the three approaches provided similar results.
In some cases, cv::BackgroundSubtractorMOG2

was slightly better than the others (Fig. 2). We used the
background subtraction approach for movement detection.

B. Object Model Construction

The object model construction consists of two phases.
One is the construction of a background model, which is
performed at the beginning of the experiments. The other
is the construction of an object model, which is performed
during each grasping action. Both background and object
models are histograms of colors. We use the hue and satu-
ration components of the HSV color space to construct the
histograms, where the number of bins of hue and saturation
components are 100 and 10 respectively.

The background model is constructed with several ad-
jacent frames (e.g. 3). We simply make it as an average
of histograms of all frames. Let us denote the background
histogram model as Hbg(h, s) where h and s denote indexes
of hue and saturation bin respectively.

During construction of an object model, the object is as-
sumed to be moving in the image as we described above. At
each frame, we detect the moving points with the background

Fig. 3. Examples of proximity vision. In each case, the detected object
is shown as blue. In pushing a screw driver, a human pushed the object
which caused slip. The detected slip is emphasized by the purple color. We
can also see green particles that are pixels detected as moving. They are
considered as the background movement since they are outside the detected
object region.

subtraction method, and calculate the histogram of colors as
Hmv(h, s). We update the object histogram model by:

H ′

obj(h, s) = min(255, Hobj(h, s)+

fgain max(0, Hmv(h, s)− fbgHbg(h, s))) (1)

where Hobj(h, s) and H ′

obj(h, s) are the current and the up-

dated object histogram models. At the beginning, Hobj(h, s)
is initialized to be zero. The component max(0, Hmv(h, s)−
fbgHbg(h, s)) computes the remaining histogram after sub-
tracting the background histogram from the color histogram
of moving points. The min(255, . . . ) operation is for nor-
malization. fbg and fgain are constant values, for example
1.5 and 0.5 respectively.

In order to simplify the timing to start and stop object
model construction, we use an object model made with the
latest 200 frames. We stop object model construction when
the robot starts closing the gripper.

C. Object Tracking

At each frame, we track an object by detecting the pixels
similar to the object model. Concretely, we apply a back
projection method (cv::calcBackProject) with the
histogram of the object Hobj(h, s), and threshold the result
to remove the uncertain pixels. The remaining pixels are the
detected object. These pixels are used in two ways. One is
removing the background change from the moving points
obtained from the background subtraction. For this purpose
we apply an erosion (size 2) and a dilation (size 7) to remove
noise and expand the boundary of the object. The other is
computing the position and the angle (orientation) of the
object. This is done by computing the moment of the object
pixels. Examples of proximity vision are shown in Fig. 3.

IV. FORCE ESTIMATION BY MARKER TRACKING

In [1] where we introduced a prototype of FingerVision, a
simple approach to track the markers was used. We applied a
blob detection method to the entire image in each frame, and
found the matching blobs between initial and current frames
to track the markers. When some blobs were not detected,
matching failed or large blob movements were shown. In this
paper we present an improved marker tracking approach.

We consider two approaches for marker tracking. One is
using the mean shift method to track the marker movement.
Initial marker positions are obtained by blob detection. For
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Fig. 4. (a) Comparison of blob tracking based on cv::meanShift
(left of each pair) and cv::SimpleBlobDetector (right of each pair).
(b) An example of marker movements when a normal force is applied.

each marker, we apply mean shift starting from the previous
marker position to obtain the current marker position. The
other approach is applying blob detection locally for each
marker. We consider a small region around the previous
marker position, and apply blob detection to obtain the
current marker position.

Both methods are implemented in OpenCV. The mean
shift method is available as the cv::meanShift

function, and blob detection is available as the
cv::SimpleBlobDetector class. We thought the mean
shift approach would be better since it is a common tracking
method. According to our preliminary test, the marker
tracking with mean shift was robust. However it turned out
that this approach does not provide good accuracy of marker
position since cv::meanShift returns an updated object
location as integer values. Since the marker movement
on the image is small (a few pixels), the movement was
jumpy. On the other hand, cv::SimpleBlobDetector
provides the detected blob position as floating-point values.
The obtained marker position movement was smooth (see
the comparison in Fig. 4(a)). Thus we choose the blob
detection-based approach.

The actual procedure consists of two phases: calibration
and tracking. In both phases, we preprocess the image by
rectifying the distortion caused by the fisheye lens, and
thresholding to extract black colors as the current markers
are black. We also apply a dilation and an erosion to remove
noise.

Calibration: The sensor is covered with a white sheet to
remove the background. We apply blob detection method
to an entire image. Then we apply the tracking method to
several frames (e.g. 10); if some markers are moving, they
are removed from the marker candidates as they are noisy
points. The remaining blobs are considered as initial markers.

Tracking: Starting from the initial marker positions, we
track each marker frame by frame. We consider a small
(e.g. 30x30) region of interest (ROI) around the previous
marker position. First we count the non-zero pixels in the
ROI and compare it with the non-zero points of the initial
marker. If there is large difference, we do not perform marker
tracking (i.e. a detection failure). Otherwise we apply the
blob detection method to the ROI. Only one blob is expected;
otherwise it is considered as a failure. We compare the
previous and current blob positions and sizes, and if their
difference is large, it is considered as a failure. Otherwise
the blob is considered as the new marker location.

A. Force Estimation

From the marker movement, we estimate an array of
forces. The blob detection provides a position and a size
of each blob. The position change is caused by a horizontal

(surface) force, while the size change is caused by a normal
force. However, since the size change is subtle compared
to the position change as reported in [1], the normal force
estimate based on the size change is noisy and unreliable.
An alternative approach approximates the normal force at
each marker with a norm of marker position change. This
approximation is useful especially when taking an average of
all the forces. When a normal force is applied to the center of
the skin surface, the markers around the point move radially
(Fig. 4(b)). An average of the horizontal forces in such a case
will be close to zero, while an average of the approximated
normal forces will have a useful value. Let dx, dy denote the
horizontal marker movement from the initial position. The
force estimate at each marker is given by: [fx, fy, fz] =

[cxdx, cy
√

d2x + d2y, czdy] where cx, cy, cz denote constant

coefficients. We also define an average force and a torque
estimate as: f = 1

N

∑

[fx, fy, fz], τ = 1
N

∑

r× [fx, fy, fz]
where N denotes a number of markers, and r denotes a
position of a marker from the center of the image.

V. FINGERVISION

This section describes an improvement of FingerVision
in manufacturing (using a 3D printer for molds for silicone
casting, and frames to install the sensor on a gripper), and in-
stallation of four sensors on a robot (sensor network). See [1]
for the design parameters such as the marker arrangement.

A. Making FingerVision

The prototype of FingerVision proposed in [1] was man-
ufactured with hand-made molds whose dimensions were
inaccurate, and manufacturing was inconsistent. Moreover,
the soft layer was easily peeled from the hard layer. Installa-
tion on the robot gripper was also handcrafted, which caused
mechanical play during use.

We designed a frame to attach the hard layer on the finger
of a gripper. The frame has a place to attach the hard layer
made with transparent acrylic, and a connection structure
to the gripper. The latter part depends on the gripper. We
created two versions: one is for the electric parallel gripper
of a Baxter robot (i.e. a standard gripper), and the other is
for the Robotiq 2-finger adaptive robot gripper-85 (legacy
version). Since we have CAD data of the fingers, we can
easily connect to the frame. The Robotiq gripper has a mount
on the fingertip under the original finger pad. We made a
structure to attach the frame to the mount. The frame also
has a mount for a camera (ELP Co. USBFHD01M-L180,
fisheye lens USB camera). We use a 3D printer (LultzBot
Mini, Aleph Objects, Inc.) for producing the frames where
we use PolyLite PLA filament.

The soft layer is made by casting silicone (Silicones Inc.
XP-565). We make a mold for the casting using a 3D printer
for consistent manufacturing. However we noticed that the
surface of 3D printed objects are not smooth enough to make
optically clear skin even after smoothing with sandpaper.
Thus we use a 3D printed mold except for the surface part
of the soft layer. For the surface part, we use ComposiMold.

In order to reduce the peeling of the soft layer, we create
depressions and holes on the sides of the frames so that the
silicone locks into them, and we cover the hard layer on both
top and bottom with the silicone (see Fig. 5(c)).

The manufacturing process is as shown in Fig. 5. Fig. 6(a)
shows our Baxter robot with the FingerVision sensors in-
stalled.



Fig. 5. (a) CAD of frames for Baxter electric parallel gripper and Robotiq
gripper. (b) Mold for silicone casting. (c) After pouring silicone into the
mold.

(a) (b)

Fig. 6. (a) FingerVision installed on Baxter electric parallel gripper and
Robotiq gripper. (b) Our Baxter system with four FingerVision sensors.

B. Sensor Network

The cameras we use have a USB 2.0 interface. The
local computers send images obtained from cameras to a
central computer, and the central computer processes all the
images. In our particular case, we use Raspberry Pi 3s as
the local computers, and transmit data through a Gigabit
Ethernet network. We use MJPG-streamer1 installed on each
Raspberry Pi to capture images from cameras, and transmit
them using a motion JPEG format. We use two Raspberry
Pi 3 computers each of which has two camera connections.
In our test, they could transmit 320x240 images at 63 FPS
from four cameras simultaneously. Fig. 6 shows our Baxter
system.

VI. EXPERIMENTS

We test the FingerVision sensors with force estimation and
proximity vision in the proposed manipulation behaviors.
Although they work with both the Baxter electric parallel
gripper and the Robotiq gripper, we use the Robotiq gripper
here. We use the cameras at 30 FPS with resolution 320x240.
Most of the scenes are shown in Fig. 7 with the force
estimation and the proximity vision views. See also the
accompanying video.

A. Evaluating Force Estimation

We evaluate the force estimation using a scale. First we let
the robot push the scale vertically to evaluate fy . Second we
let the robot hold a stick and push the scale with it in order to
evaluate fz . Similarly we evaluate fx by changing the stick
and pushing direction. In each case we discretely increase
the pushing force from around 1 [N] to 20 [N]. Fig. 8 shows
the results. The values of the weight scale are linearly scaled
and offset. We noticed that there was hysteresis. There were
two sources of noise: marker tracking and the robot control.

1We use a forked version: https://github.com/jacksonliam/
mjpg-streamer

Fig. 8. Average force trajectories in evaluating fy (left), fz (middle), and
fx (right) respectively. The ∗ mark the scale readings (linearly scaled, and
offset). The unit of force is omitted as it is not calibrated as engineered
units.

Fig. 9. Vertical component (z-axis) of the force estimate during the
pouring-water experiment. Actual pouring is from 35 to 52 [s]. The unit
of force is omitted as it is not calibrated as engineered units.

B. Pouring Water into a Grasped Container

We have the gripper grasp a container, and then pour water
into the container manually. Fig. 9 shows the vertical compo-
nent (z-axis) of the force estimate. Pouring was performed
from 35 [s] to 52 [s]. The force gradually increased. This
would be accurate enough to estimate the poured amount of
water during a pouring task.

C. Proximity Vision

We explore basic results from proximity vision. We let
the gripper grasp a screw driver weakly, and move it in the
gripper manually. Then we let the gripper grasp an empty
Coke can, and poke the can 4 times. Fig. 10 shows the result
of rotating the screw driver. We can see that the object angle
changes from zero to negative, to positive, and goes back to
zero again. The object angle measured by an external camera
is also plotted in the figure. Around the peaks, the object
angle is different from the estimate by proximity vision. This
was because around these angles, a part of the object was out
of the camera view. During rotating the screw driver, there
are positive movement values that are capturing the slippage.
The torque estimate sensed the external torque that rotated
the screw driver. Fig. 11 shows the result of poking the
Coke can. Since the Coke can was light weight, the human
poked very weakly. The force and torque estimates did not
capture the poke. However the proximity vision detected
the movement as we can see four peaks in the graph that
correspond with the four pokes.

D. Gentle Grasp

We test the gentle grasp strategy. We have the robot grasp
an empty Coke can, and grasp a paper business card on
edge. Both objects are soft and will be damaged with even
small forces. Fig. 12 shows the force and torque estimate,
and the proximity vision output during the gentle grasp.
The actual grasp happened at 34.5 [s]. We can see a small
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Fig. 7. Scenes of experiments. “Force est” are views of force estimation (red lines show estimated forces), and “Prox vision” are views of proximity
vision (blue regions are detected objects, and purple points are detected movements).

Fig. 10. Force and torque estimate (top) and proximity vision (bottom)
during rotating the screw driver. In the proximity vision graph, there are
plots of the object angle (radian) and area obtained from the moment of
object pixels, and the total number of moving pixels (normalized by the
image size). Object angle obtained by an external camera is also plotted
(Mocap-obj-angle). The units of force and torque are omitted as they are
not calibrated as engineered units.

Fig. 11. Force and torque estimate (top) and the proximity vision (bottom)
during poking a Coke can. See the caption of Fig. 10 for the plots.

change of force around that time. We can also see movement
detection before and during grasping. This was caused by
the approaching motion before the grasp. Similar results
are found in the card case as shown in Fig. 13. The actual
grasping happened at 151 [s]. The movement detection is
less than that of the Coke can case. Since the robot grasped

Fig. 12. Force and torque estimate (top) and the proximity vision (bottom)
during gently grasping a Coke can. See the caption of Fig. 10 for the plots.

Fig. 13. Force and torque estimate (top) and the proximity vision (bottom)
during gently grasping a business card. See the caption of Fig. 10 for the
plots.

the card on edge, it appeared only in a small region of the
image.

E. Holding Strategy

We demonstrate the holding strategy by grasping a screw
driver. We compare two patterns: (A) the gentle grasp
strategy, and (B) the holding strategy. During grasping with



Fig. 14. Results of the holding strategy. Top two graphs are results of the
gentle grasp, and bottom two graphs are ones of the holding strategy. In
each pair, force and torque estimate (top) and the proximity vision (bottom)
are plotted. See the caption of Fig. 10 for the plots.

Fig. 15. Force and torque estimate (top) and the proximity vision (bottom)
during holding and moving a marshmallow. See the caption of Fig. 10 for
the plots.

each pattern, a human pushes the driver several times. The
results are shown in Fig. 14. From the graphs of force and
torque estimates, we can see that stronger external force was
applied in (B). The orientation of the object is changing more
in (A). Thus the holding strategy could reduce slip.

We apply the holding strategy to grasp a marshmallow
where a human pulls the marshmallow. Fig. 15 shows the
result. We can see many slip detections (peaks in Right-
movement) from the bottom graph, and the magnitude of
grasping force (|fy|) is increasing accordingly in the top
graph.

Next we let the robot move a stuffed toy. Moving with
the gentle grasping strategy, the robot dropped the toy due
to a slip. However by activating the holding strategy, the
robot could hold and move the toy. Fig. 16 shows the force
and torque estimates and the proximity vision output during
the motion. We find that there are several discrete events of
slippage, and after each of them, the grasping force (see fy)
was increased. At 545 [s], the robot passed the object to the
human. The area of the object in the image, and the force
and torque estimates became zero after that.

Fig. 16. Force and torque estimate (top) and the proximity vision (bottom)
during holding and moving a stuffed toy. See the caption of Fig. 10 for the
plots.

Fig. 17. Force estimate (top) and the proximity vision (bottom) during
grasping a paper bird. See the caption of Fig. 10 for the plots.

F. Grasping A Fragile Object with the Holding Strategy

We demonstrate that using the holding strategy the robot
can grasp a very light-weight fragile object. As such an
object, we use an origami crane. A human passes an origami
crane to the gripper, and the robot uses the holding strategy.
After grasping it without slip, the robot swings its arm to
see if the holding strategy is effective. Fig. 17 shows the
result. The robot performed grasping from 142 [s] to 145
[s]. We can see slip detection around 155 [s] and so on, but
the object was kept inside the gripper. From the force and
torque estimates, we cannot see informative changes. This
was due to the small weight of the object (1.7 g).

G. Handover

We demonstrate the handover strategy by applying it to a
Coke can and a business card. Both objects are grasped by
the gentle grasping strategy, and the card is grasped on edge.
Fig. 18 shows the result. In the Coke can case, the robot
started to open the gripper triggered by the slip detection
at 25.1 [s]. In the business card case, the opening gripper
was triggered by the force change detection at 160 [s]. The
reason could be that the Coke can is slippery, while the slip
detection does not work well with the card when it is grasped
on edge. We also investigated other object cases, and found
that when the robot grasped an object strongly, the force-
trigger was often used since the slip rarely happened with
such grasps.

H. In-hand Manipulation

We apply the in-hand manipulation strategy to rotating a
pen. The target angle is 20 degrees from the current angle.
Fig. 19 shows the results of eight runs. In most cases the



Fig. 18. Results of the handover strategy. Top two graphs show the result
of the Coke can case, and bottom tow graphs show the result of the card
case. Each of them have force and torque estimates (top) and the proximity
vision (bottom). See the caption of Fig. 10 for the plots.

Fig. 19. Result of in-hand manipulation. The object orientations obtained
by the proximity vision are plotted per time. The initial orientation is set to
be zero.

achieved angles exceeded the target. This was because the
object movement caused by gravity was fast and the sensing
and processing frame rate was not enough to respond to that,
and the gripper response was not fast enough.

VII. CONCLUSION

We explored four manipulation strategies that used tactile
sensing: gentle grasping, holding, handover, and in-hand
manipulation. We used a simple vision-based approach,
FingerVision, an optical multimodal-sensing skin for fingers
that we proposed in [1]. We developed image processing
methods for FingerVision (proximity vision) to provide slip
detection, object detection, and object pose estimation. We
improved the hardware design of FingerVision, and force
estimation. The results of experiments demonstrated that the
manipulation strategies with FingerVision were effective.
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