
Differential Dynamic Programming for Graph-Structured Dynamical Systems:
Generalization of Pouring Behavior with Different Skills

Akihiko Yamaguchi1 and Christopher G. Atkeson1

Abstract— We explore differential dynamic programming for
dynamical systems that form a directed graph structure. This
planning method is applicable to complicated tasks where sub-
tasks are sequentially connected and different skills are selected
according to the situation. A pouring task is an example: it
involves grasping and moving a container, and selection of
skills, e.g. tipping and shaking. Our method can handle these
situations; we plan the continuous parameters of each subtask
and skill, as well as select skills. Our method is based on
stochastic differential dynamic programming. We use stochastic
neural networks to learn dynamical systems when they are
unknown. Our method is a form of reinforcement learning.
On the other hand, we use ideas from artificial intelligence,
such as graph-structured dynamical systems, and frame-and-
slots to represent a large state-action vector. This work is a
partial unification of these different fields. We demonstrate our
method in a simulated pouring task, where we show that our
method generalizes over material property and container shape.
Accompanying video: https://youtu.be/_ECmnG2BLE8

I. INTRODUCTION

In order to create robots that can handle complicated tasks
such as manipulation of liquids (e.g. pouring), we explore
a form of policy optimization for directed-graph-structured
dynamical systems that involve continuous parameter ad-
justments and selections of discrete strategies. For example,
a pouring behavior model can be graph structured with
transitions such as: grasping a source container, moving it
to the location of a receiving container, and pouring with
a skill such as tipping, shaking, and squeezing. We also
consider learning dynamical models when we do not have
good analytical models, as in liquid flow. A practical benefit
of our method is that in a case study of pouring [1], the
behavior could generalize more.

More concretely we consider a dynamical system that has
a graph structure (Fig. 1 (a) and (b)). Each node has a state
vector x, and each edge has a dynamical system that takes
x and a continuous action vector a as an input and outputs
a state vector x′ of the next node. The structure may involve
bifurcations; an actual next node is decided by x, a, and a
selection variable s. We consider a bifurcation as a discrete
probability distribution model. A graph-structured dynamical
system has a start node, and one or more terminal nodes
that give rewards. When a dynamical system is partially
or totally unknown, we use learning methods to construct
dynamical models and bifurcation models. Our problem is
to find all actions {a} and selections {s} used in the graph-
structured dynamical system so that the expected sum of
rewards is maximized. As far as we know, such an opti-
mization method has not been proposed yet. Note that this
problem formulation includes dynamic programming (DP),

1A. Yamaguchi and C. G. Atkeson are with The Robotics Institute,
Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh PA 15213,
United States info@akihikoy.net

Fig. 1. (a) A primitive of graph-structured dynamical systems. We omit a
bifurcation model FP

k when the number of branches is one. (b) An example
of a graph-structured dynamical system. Circles denote bifurcations, boxes
denote component dynamical systems, and n denotes a node. The marks on
edges after bifurcation models of (a) and (b) denote groups. Only a single
edge in a group can actually happen. (c) An example of mapping from a
super-state-action dictionary (SSA) to another SSA.

differential dynamic programming (DDP), model predictive
control (MPC), and so on as subclasses.

In order to solve this problem, we first transform the
graph structure into a tree structure; i.e. if the graph struc-
ture involves loops, they are unrolled. For the optimization
of continuous action vectors, we reformulate a stochastic
version of DDP [2]. DDP is a gradient-based optimization
algorithm. DDP is applicable since we can propagate the
state vectors along the tree dynamical structure and get the
rewards, and then we calculate gradients with respect to
state and action vectors by propagating backward through
the tree from terminal nodes. For the optimization of discrete
selections, we combine DDP with a multi-start local search.
A multi-start local search is also useful to avoid poor local
maxima. Since we use learned dynamical models, there
might be many local maxima.

We also introduce a super-state-action dictionary (SSA)
that is our specific version of frames and slots used in
traditional artificial intelligence [3]. An SSA contains various
types of information for each node, such as container posi-
tions, material properties, current and target amounts, robot
configuration, and actions such as target joint angles. These
variables are stored with their labels. Each edge dynamical
system maps a part of an SSA to a part of a new SSA where
new slots may be added (Fig. 1 (c)). The benefits of SSA in
our research are: (1) We can reduce modeling or learning
costs since edge dynamical systems usually use a small part
of whole SSA. (2) We can naturally represent discontinuous
changes in dynamics (e.g. flow appears after pouring starts).
(3) The reusability of component dynamical systems might
be increased.

We explore our method in simulated pouring experiments.
The simulator creates variations of the source container

https://youtu.be/_ECmnG2BLE8


shape and the poured material property. In this simulator,
using different pouring skills such as tipping and shaking is
necessary. With these experiments, we show that our method
can select skills as well as optimizing continuous parameters
for given situations. Our method achieved a generalization
of pouring over container shapes and material properties.

Related Work

The features of the proposed methods are: (1) Differential
dynamic programming (DDP) for graph-structured dynami-
cal systems. (2) Model-based reinforcement learning for hi-
erarchical dynamic systems. (3) Super-state-action dictionary
(SSA) to represent complicated systems. Thus we mention
the related work in the fields of DDP, reinforcement learning,
and artificial intelligence.

There is a great deal of work on DDP ([2]). Some of it is
stochastic (e.g. [4]) similar to ours. Usually DDP methods
use a second-order gradient method (e.g. [4], [5]), while we
use a first-order algorithm [6]. Our approach is simpler to
implement. Previous DDP methods consider linear-structured
dynamical systems (including a single loop structure) while
we consider graph-structured dynamical systems.

In general our problem is a reinforcement learning (RL)
problem. Although a current popular approach of RL in robot
learning is a model-free approach (cf. [7]), especially direct
policy search (e.g. [8], [9]), there are many reasons to use
model-based RL. In model-based RL, we learn a dynamical
model of the system, and apply dynamic programming such
as DDP (e.g. [10], [11], [12]). The advantages of the model-
based approach are: (A) Generalization ability: in some
cases, a model-based approach generalizes well (e.g. [13]).
(B) Reusability: learned models can be commonly used
in different tasks. (C) Robustness to reward changes: even
when we modify the reward function, we can plan a new
policy with learned models without new physical practice.
A major issue of the model-based approach is so-called
simulation biases [7]; the modeling error accumulates rapidly
during time integrals. In our approach, we learn (sub)task-
level dynamic models according to the idea of task-level
robot learning [14], [15]. We learn the relation between
input and output states of a subtask which often does not
require time integrals in forward estimation. In addition, we
use probabilistic representations for dealing with modeling
errors. Our strategies are described in detail in [16]. This
paper is following these strategies, and extending them to
graph-structured dynamical systems.

Recently deep learning neural networks (DNN) have
become popular. Many researchers are investigating their
application to reinforcement learning (e.g. [12], [17], [18]).
Similar to our approach, DeepMPC uses neural networks to
learn models [12]. A notable difference of our approach is
that we learn task-level dynamical systems that are robust
to the simulation-bias issue. In addition, in our previous
work, we introduced a probabilistic computation into neural
networks [18]. In this paper we use this extension to learn
dynamical models when they are unknown.

The idea of SSA is found in traditional artificial intelli-
gence (AI) literature (e.g. [3]), known as frames and slots.
Similarly, the idea of graph-structured dynamical systems is
also known in the AI field [19]. Our contribution to this field
is the introduction of the numerical approaches (DDP, RL,

DNN) to the AI methods, and its application to a practical
robot learning task (pouring).

II. DIFFERENTIAL DYNAMIC PROGRAMMING FOR
GRAPH-STRUCTURED DYNAMICAL SYSTEMS

For a given graph structure of a dynamical system, models
of edge dynamical systems and bifurcations, and the cur-
rent states, we plan continuous action vectors and discrete
selections used in the entire dynamical system. The plan-
ning algorithm is based on stochastic differential dynamic
programming (DDP; [2]). DDP assumes a linear structure
of dynamical system (including a single loop structure); we
extend it to a graph structure. We refer to our algorithm as
Graph-DDP. Graph-DDP optimizes a value function which
is an expected sum of rewards with respect to continuous
action vectors and discrete selections. We use the ideas of
the original DDP, a gradient-based optimization, to plan the
continuous action vectors. We combine DDP with a multi-
start gradient-based optimization in order to (1) plan discrete
selections, and (2) avoid poor local optima that often exist
especially when we use learned dynamical models (e.g. using
neural networks).

The Graph-DDP method consists of a graph structure
analysis, forward and backward computation to obtain the
value function and its gradient with respect to the continuous
action vectors, and multi-start gradient-based optimization.

A. Problem Formulation
For the convenience of calculation, we represent a graph

structure of a dynamical system as a set of bifurcation
primitives. As illustrated in Fig. 1 (a), each bifurcation
primitive has an input node nk and multiple output nodes
{nb

k+1} where b is a label of each branch. There is an edge
dynamical system Fb

k between each pair of nk and nb
k+1.

The probability pbk+1 of actually going through a branch b

is modeled by FPb
k .

Although we refer to Fb
k as a model of an edge dynamical

system, we can use a kinematic model or a reward model
instead of a dynamical model. The following calculations do
not change for these types of models. When an output node
nb
k+1 does not have a succeeding bifurcation or dynamical

system, we refer to it as a terminal node. We assume that
terminal nodes have a reward in their states. That is, when
nb
k+1 is a terminal node, the corresponding Fb

k is a reward
model.

In order to increase the representation flexibility, we con-
sider groups of branches (Fig. 1(a)(b)). Only a single branch
per group can actually happen; while, branches of different
groups may actually happen simultaneously. This idea is
useful when defining a reward bifurcation (one branch is for
a reward calculation, and another branch is for succeeding
processes). In branches of the same group, the sum of
transition probabilities must be one. We have to consider
this constraint when we learn the bifurcation models, but the
planning calculation may omit that. Thus in this section on
planning, we do not denote the groups explicitly.

Each node has a super-state-action dictionary (SSA).
Although SSA dramatically increases the computation and
learning efficiency, the planning calculation becomes com-
plicated. In this section, we consider a serialized vector xk

for simplicity; xk contains all values (states, actions, and



selections) in an SSA. Since we apply a stochastic DDP,
we consider a normal distribution of xk; xk ∼ N (µk,Σk)
where µk is a mean vector and Σk is a covariance matrix. We
give special treatment to selections in xk as they are discrete
values: we consider they are non-probabilistic (deterministic)
values, and their gradients are zero (i.e. DDP does not update
them). In the following, for simplicity, we use a deterministic
notation for xk, but its extension to the probabilistic form
N (µk,Σk) is straightforward.

The objective of Graph-DDP is maximizing an expected
sum of rewards with respect to the actions and selections
used in the dynamical system; i.e. we solve

J0(x0) = E[
∑

n∈terminal nodes rn] (1)
w.r.t.A,S (2)

where A and S are concatenated vectors of all actions and
selections, i.e. A = [a0,a1, . . . ], S = [s0, s1, . . . ]. Here we
assume that x0 contains all of A and S. This notation might
not be a common style of DDP, but it makes the planning
calculation simpler, and the computational efficiency is im-
proved by using the SSA calculus. We assume that there is
no hidden state in x0.

We assume that the model of an edge dynamical system
Fb

k gives a prediction of the next SSA as a probabilistic
distribution, and an expected derivative with respect to the
input SSA mean. Similarly, FP

k gives expected probabilities
of branches, and an expected derivative with respect to the
input SSA mean.

B. Graph-Structure Analysis
The analysis of a graph structure involves two steps:

(1) unrolling the loops (i.e. transforming the structure to a
tree structure), and (2) deciding the backward computation
order. Note that the obtained tree and the backward compu-
tation order is kept during the DDP iterations.

For unrolling the loops, we define a maximum number of
visitations per node. We use a breadth-first search to traverse
the graph structure until the number of visitations reaches the
limit or all nodes are visited at least once. Consequently we
obtain a tree structure.

The backward computation order is used to compute
gradients in the backward direction from terminal nodes.
Similar to breadth-first search, we traverse the tree back-
wards. However we keep the condition that when computing
about a node nk, all its succeeding branches {nb

k+1} must
be computed in advance.

C. Forward and Backward Computation
Since DDP is an iterative algorithm, we have current

(tentative) values of A and S. The forward and the backward
computations are done with these current values. Starting
from a start node, we propagate SSA to the terminal nodes by
traversing the tree, and we compute the gradients of the value
function with respect to SSA in the backward computation
order. In the following, we assume that only the bifurcation
models FPb

k have probabilistic distributions, and treat xk

as deterministic variables instead of N (µk,Σk). For the
extension from xk to N (µk,Σk), refer to stochastic DDP
papers (e.g. [20]).

We use a breadth-first search to traverse the tree. In
every visitation of a non-terminal node nk, we compute the

bifurcation model and the dynamical models of branches.
Let xk denote the SSA at nk. For each branch b, we
compute the output SSA xb

k+1 and the transition probability
pbk+1: xb

k+1 = Fb
k(xk), pbk+1 = FPb

k (xk). We also compute

their gradients with respect to xk: ∂Fb
k

∂xk
, ∂FPb

k

∂xk
. This forward

propagation is calculated from a start node to terminal nodes.
We use the backward computation order to traverse the

tree from terminal nodes. We assume that each node has a
value function Jk(xk) that estimates an expected sum of suc-
ceeding rewards. Such a value function is back-propagated
from terminal nodes, and eventually we have a value func-
tion J0(x0) for the start node. The back-propagation at a
bifurcation is given by:

Jk(xk) = E

[∑
b

Jb
k+1(x

b
k+1)

]
=

∑
b

FPb
k (xk)J

b
k+1(x

b
k+1) (3)

=
∑
b

FPb
k (xk)J

b
k+1(F

b
k(xk)). (4)

When nk+1 is a terminal node, Fb
k is a reward model and

xb
k+1 has a reward. In that case, we define Jb

k+1 as the
expectation of the reward.

In DDP, we use a gradient of J0 with respect to x0, which
is calculated with a chain rule of derivatives. The chain rule
back-propagates the gradients from the terminal node. The
back-propagation at a bifurcation is given by:

∂Jk

∂xk
=

∑
b

∂

∂xk

[
FPb

k (xk)J
b
k+1(F

b
k(xk))

]
(5)

=
∑
b

[
∂FPb

k

∂xk
Jb
k+1 + FPb

k

∂Fb
k

∂xk

∂Jb
k+1

∂xb
k+1

]
. (6)

When nk+1 is a terminal node, ∂Jb
k+1

∂xb
k+1

is 1. Finally we obtain
∂J0

∂x0
. This contains gradients of J0 with respect to A (a

serialized vector of all continuous actions) which is used
in the gradient-based optimization to update A.

D. Multi-start Gradient-based Optimization
We describe the whole optimization process of Graph-

DDP. First we analyze the graph structure, and obtain a cor-
responding tree structure of the graph-structured dynamical
system and the backward computation order. Second, we ap-
ply a multi-start gradient-based optimization to optimize the
continuous action vectors and the discrete selections. This is
an iterative process: in the initialization, we generate multiple
starting points (initial guess) including different values of
discrete selections. In each iteration for each starting point,
we compute the forward and backward propagations, and
update the continuous action vectors with a gradient-based
optimization method. Specifically we use ADADELTA [6].

In the initial guess, we generate starting points in two
ways: (1) randomly choosing from a database that is storing
all samples used in the past, and (2) randomly generating
continuous action vectors from a uniform distribution or a
Gaussian distribution, and discrete selections from a uniform
distribution. The obtained points are stored in a start-point-
queue.

We use multi-process programming in the iteration pro-
cess. Each process has a different starting point popped
from the start-point-queue, and updates the continuous action
vectors independently from the other processes. The discrete



selections are not updated in the iterations. The iterations
of each process stops when (1) a convergence criterion is
satisfied, (2) the number of iterations exceeds a limit, or
(3) an oscillation is detected. In case (1), the converged point
is appended into a finished-point-list. In cases (2) and (3), the
point is appended into the finished-point-list only when its
value is greater than the best value. In any cases, the point is
pushed onto the start-point-queue. The whole multi-process
optimization is terminated when (a) the number of points
in the finished-point-list satisfies a termination criterion,
(b) the start-point-queue is empty, or (c) the total number
of iterations reaches a limit.

III. SUPER-STATE-ACTION DICTIONARY (SSA)
In an implementation, a super-state-action dictionary

(SSA) would be represented by an associative array; e.g. a
map container in C++, a dictionary in Python, and a hash in
Perl. The keys of SSA are labels that distinguish the types of
elements in SSA; e.g. “source container position”, “current
joint angles”, and “target joint angles”.

The Graph-DDP described in the previous section consid-
ers a serialized vector for each SSA. Using the dictionary
form of SSA, we can obtain the benefits as mentioned in the
introduction section, including computational efficiency.

In order to make use of SSA in Graph-DDP, we modify
the forward and backward computations of each bifurcation
primitive. We consider a bifurcation primitive illustrated in
Fig. 1 (a) where the input node is nk. As illustrated in Fig. 1
(c), each edge dynamical system maps a part of an input SSA
to a part of an output SSA. The other elements of the input
SSA are kept in the output SSA. Then although a gradient
of each edge dynamical system is a huge matrix, many of
the diagonal elements are one, and many of non-diagonal
elements are zero. This sparsity leads to computational
efficiency.

Let lk,i ∈ Lk denote an i-th label of SSA at a node nk

(i = 1, 2, . . . ), and lbk+1,i ∈ Lb
k+1 denote an i-th label of

SSA at a node nb
k+1 (an output node of a branch b), where

Lk and Lb
k+1 denote a set of labels. ξk, ξbk+1: SSA at a node

nk and nb
k+1 respectively. ξ[l]: a value of a label l in an SSA

ξ. We consider a probabilistic distribution of SSA ξ as that
each element ξ[l] has an independent normal distribution (we
omit the calculation of the probabilistic distribution for the
readability).

An edge dynamical system Fb
k(xk) is modified to: ξbk+1 =

Fb
k(ξk). F

b
k uses only Inb

k ⊂ Lk labels of ξk as the input,
and modifies only Outbk ⊂ Lb

k+1 labels1. Formally, Lb
k+1 =

Lk∪Outbk. The forward computation is: ξbk+1[l] = Fb
k(ξk)[l]

for l ∈ Outbk, and ξbk+1[l] = ξk[l] for (l ∈ Lk and l /∈
Outbk). Similarly, a bifurcation probability model FPb

k (xk)
is modified to: pbk+1 = FPb

k (ξk). F
Pb
k uses only InPb

k ⊂ Lk

labels of ξk as the input.
Let us denote the label-wise gradients of Fb

k and FPb
k

with respect to the input SSA as follows: ∂Fb
k[l2][l1] =

∂Fb
k(ξk)[l2]
∂ξk[l1]

, ∂FPb
k [l1] =

∂FPb
k (ξk)

∂ξk[l1]
. For all l1 ∈ Inb

k and l2 ∈
Outbk, the corresponding elements ∂Fb

k[l2][l1] are obtained
by differentiating Fb

k. Otherwise, the elements are calculated
as follows: ∂Fb

k[l2][l1] = 1 for (l1 ∈ Lk and l1 /∈ Outbk

1Outbk may include new labels that do not appear in the labels Lk .

and l2 = l1), and ∂Fb
k[l2][l1] = 0 otherwise, where 0 and

1 denotes a zero and an identity matrix. Similarly, for all
l1 ∈ InPb

k , the corresponding elements ∂FPb
k [l1] are obtained

by differentiating FPb
k . Otherwise, the elements are 0.

The backward computation is also done in a label-wise
fashion. The back-propagation of a value function J is
obtained easily from Eq. (4) just replacing xk by ξk. In terms
of the gradients of J , we assume that succeeding gradients
are back-propagated as follows: ∂Jb

k+1[l] =
∂Jb

k+1(ξ
b
k+1)

∂ξb
k+1[l]

for all l ∈ Lb
k+1. By substituting these and the forward

computation results into Eq. (6), we obtain: for each l ∈ Lk,

∂Jk[l] =
∂Jk(ξk)

∂ξk[l]
=

∑
b

[
∂FPb

k [l]Jb
k+1

+ FPb
k

∑
l′∈Lb

k+1

∂Fb
k[l

′][l]∂Jb
k+1[l

′]
]
. (7)

IV. TOY EXAMPLE (1)

We demonstrate how Graph-DDP works in a simple toy
example inspired by [14]. Fig. 2(left) illustrates this example.
We consider a 2D world with two cannons at p1 = [0, 0]⊤

and p2 = [0, 0.8]⊤, and a static target at pe. The task is
shooting a bullet to hit the target with one of the cannons.
We can decide the launch angle θ ∈ [−π/2, π/2], while
the initial speed is a constant v0 = 3. There is gravity g =
[0,−g]⊤ = [0,−9.8]⊤. The cannon-selection criterion is that
the bullet must reach the target, and a smaller flight time is
better.

In addition to p1, p2, pe, θ, and v0, the variables (i.e.
SSA elements) are: s ∈ {1, 2}: a selection of cannons each
of which corresponds to p1 and p2, th: the time when the
bullet passes the x position of pe (i.e. reaching time), phy:
the height (y position) of bullet at th.

Fig. 2(right) shows the graph-structured dynamical system
used for planning. The bifurcation model FP

s models the
bifurcation probabilities p1, p2 based on the selection s.
Specifically, FP

s (s) = [δ(s, 1), δ(s, 2)]⊤ where δ(s, s′) takes
1 if s = s′, otherwise takes 0. We consider the gradient
of FP

s with respect to s to be zero. The edge dynamical
systems F1 and F2 model the result of shooting, th and
phy (i.e. [th, phy]

⊤ = F0(p0,pe, v0, θ) where F0 is one
of F1 and F2, and p0 is one of p1 and p2). In this
case we use an analytical model: th = β/(v0 cos θ)),
phy = p0y + β sin θ/ cos θ − α/(cos θ)2, where p0 =
[p0x, p0y]

⊤, pe = [pex, pey]
⊤, β = pex − p0x, and α =

gβ2/(2v20(cos θ)
2). The gradient of F0 with respect to the

input variables is a 6× 2 matrix. Since the optimized action
is only θ, we compute only the partial gradients with respect
to θ, and assign zero to other elements of the matrix;
∂th/∂θ = β sin θ/(v0(cos θ)

2)), ∂phy/∂θ = β/(cos θ)2 −
2α sin θ/(cos θ)3. The reward function R is given as follows:
R(th, phy, pey) = −(phy − pey)

2 − 10−3t2h; the reason of
the small weight on t2h is because the main task purpose is
making the shot reach the target.

We varied pex from 0 to 1.5, and set pey = 0.3. Fig. 3
shows the result of planning θ and s with Graph-DDP at
each pex. Solving the problem analytically with respect to
θ, we find two possible solutions for each cannon when the
target is in the reachable range. For each cannon, we chose a
better θ (i.e. th is smaller), and plot in Fig. 3 as the analytical



Fig. 2. Shoot-UFO-by-cannon task. Left: illustration of the task, right:
graph-structured dynamical system of the task.

Fig. 3. Result of the shoot-UFO-by-cannon task. Analytically obtained θ
for each cannon is also plotted. There are three marker types: circle shows
the selection is correct, cross shows the selection is wrong, and triangle
shows an approximation (there is no analytical solution).

results. Note that there is no solution of θ for the cannon p1
and pex > 0.54, and for the cannon p2 and pex > 1.32. The
marker shapes denote whether the cannon selection is correct
or wrong. There were two mistakes. Since they were around
the border where the optimal cannon changes, the th values
of local optima were close. As a consequence, suboptimal
solutions were chosen. When pex > 1.32, although there is
no solution, Graph-DDP gives θ that maximizes R.

V. LEARNING DYNAMICS

When solving practical and complicated tasks such as ma-
nipulation of liquids, dynamical models are sometimes par-
tially or totally unknown. For example in pouring, the flow
dynamics are complicated to construct models analytically.
In such situations, we learn models from samples obtained
from practice. Specifically we use neural networks extended
to be usable with stochastic DDP [18]. The extended neural
networks are capable of: (1) modeling prediction error and
output noise, (2) computing an output probability distribution
for a given input distribution, and (3) computing gradients
of output expectation with respect to an input. Since neural
networks have nonlinear activation functions (in our case,
rectified linear units, ReLU), these extensions were not
trivial. In [18] we gave an analytic solution for them with
some simplifications.

Fig. 4 shows the neural network architecture used in this
paper. We consider a mean model and an error model. The
error model estimates output noise and prediction error. For
a given set of samples of input {x} and output {y}, we
train the mean model with a back propagation technique.
Then we generate prediction errors (including output noise)
{∆y} for training the error model. A special loss function is
used. When a normal distribution x ∼ N (µ,Σ) is given as
an input, our method computes E[y], cov[y], and the gradient
∂E[y]
∂µ analytically. Thus we can use the neural networks in

Fig. 4. Neural network architecture used in this paper. It has two networks
with the same input vector. The top part estimates an output vector, and the
bottom part models prediction error and output noise. Both use ReLU as
activation functions.

the forward and the backward propagations of the stochastic
DDP. Refer to [18] for more details including comparisons
with locally weighted regression.

VI. TOY EXAMPLE (2)
We apply Graph-DDP to a simplified pushing task where a

target object position has a mixture-of-Gaussian uncertainty.
This task was inspired by [21]. The task setup is illustrated
in Fig. 5(left) where we consider a pushing task on a 2D
plane. The target object is located at po, whose observation
has a mixture-of-Gaussian distribution. An example physical
situation is that a template matching algorithm detects multi-
ple local optima of the matching function. Here we consider
only a mixture of two Gaussian distributions, N (p1, σ1),
N (p2, σ2), with fixed weights 0.5, 0.5 respectively. The
pushing motion is predefined and parameterized with pm,
θ, and m; the gripper is put at pm with the orientation θ,
and moves forward with distance m. There are four possible
cases of the result of the pushing motion as depicted in
(a). . . (d) of Fig. 5(center). Only in cases (c) and (d), the
target object moves, and only in (d) there is success (the
object is pushed by the center of the gripper).

Fig. 5(right) shows a graph-structured dynamical system
to plan the pushing parameters. We use a bifurcation to
represent multimodality (not a selection of actions); i.e. each
branch corresponds with a Gaussian distribution, and FP

s

gives the mixture weights: FP
s () = [0.5, 0.5]⊤ (this is a

constant). The edge dynamical systems Fgrasp1 and Fgrasp2

model the result of the pushing motion. We assume that
these functions return ∆p̄′

1 and ∆p̄′
2 that denote the object

position after the movement in the gripper coordinate system.
Deriving these equations is trivial, but they have a nonlinear-
ity; there are discrete changes in the dynamics as shown in
(a). . . (d) of Fig. 5(center). We use a Taylor series expansion
to obtain gradients of the dynamical systems, and compute
the propagation of Gaussian distributions with local linear
models. The reward is defined as: R = −1000∥∆p̄′

i∥2 −
0.001m2 where i indicates 1 or 2. This reward means that
we add a big penalty for ∥∆p̄′

i∥ (the cases other than (d) of
Fig. 5(center) are penalized), and a small penalty for gripper
movement.

We compare three cases: (1) using an analytical model,
(2) using an analytical model without considering the Gaus-
sian distributions (i.e. let σ1 and σ2 be zero), and (3) using
neural network models for Fgrasp1 and Fgrasp2. (2) is for
verifying if the planned actions (1) consider the Gaussian
distributions. Since the dynamical system contains discrete



Fig. 5. Push-under-uncertainty task. Left: illustration of the task, center:
different results of pushing, right: graph-structured dynamical system of the
task.

Fig. 6. Result of the push-under-uncertainty task.

changes, the local linear model becomes inaccurate around
the discontinuities, affecting DDP and the propagation of
Gaussian distributions. We use our neural networks to see
if these problems are reduced. As reported in [18], our
stochastic neural networks give better predictions of output
expectations and gradients especially when the approximated
function includes discrete changes such as a step function.

We randomly changed N (p1, σ1) and N (p2, σ2). The
success rate of 100 trials are: (1) Analytical: 83, (2) An-
alytical (zero SD): 42, (3) Neural Networks: 96. Consider-
ing Gaussian distributions increases the success rate. Using
neural network models also improves the success rate. Some
examples are shown in Fig. 6. (a), (b), and (c) compare the
three cases in the same situation. In (b), the gripper starts
from the position where it touches both centers of Gaussian
distributions p1, p2. The neural network model (c) gives
intuitively correct plan compared to (a). (d), (e), and (f) are
the results of the neural network model in different situations.
These results would also be intuitively correct. Note the
reason why the gripper movement is not on the line p1-p2
in (d) and (f) would be due to the movement penalty.

VII. SIMULATION EXPERIMENTS OF POURING

We explore the usefulness of Graph-DDP in a more
complicated task, pouring. We extend the pouring simulator
from our previous work [20], [18], to simulate a different
viscosity of a material, and different mouth sizes of a source
container. The purpose of the extension is to create a pouring
task where different skills are necessary to generalize, similar
to a real pouring task. Refer to the accompanying video.

In Open Dynamics Engine (http://www.ode.org/),
we simulate source and receiving containers, poured mate-
rial, and a robot gripper grasping the source container as
shown in Fig. 7(a). The gripper is modeled as fixed blocks
around the source container. We can change the grasping
position, but it does not affect the grasp quality. This gripper
possibly pushes the receiving container during pouring.

Fig. 7. (a) Pouring simulation setup. (b) Types of poured materials.

We simulate the poured material with many (100) spheres.
Although each of the spheres is a rigid object, the entire
group behaves like a liquid (no surface tension or adhesive
effects). For simulating different types of materials, (1) we
model a viscosity, and (2) we modify some contact model
parameters, such as bouncing parameters. The viscosity is
modeled by applying gravitational forces between spheres
virtually. We use four types of materials: (wat): water-
like viscosity (non-viscous), (bnc): water-like viscosity (non-
viscous) and high bouncing parameters, (vsc): large viscosity,
and (vsc+): very large viscosity. The examples of these flows
are shown in Fig. 7(b). If the mouth size of the source
container is small enough, the flow of (vsc) and (vsc+) stop
completely as the material is jammed around the mouth.
Shaking the container can solve jamming. The diameter of
each sphere is 0.05 (length unit in simulator; the gravity is
1.0), and the size of source mouth varies from 0.11 to 0.25.

The behavior of pouring is designed with a state machine
as illustrated in Fig. 8(top). The robot grasps the source
container, moves it to somewhere close to the receiving
container, moves it to the pouring location, and produces
a flow with a selected skill. If the flow is not observed in
a specific time, the robot moves the source container back
and restarts from MoveToPour. This trial-and-error loop
is repeated until the target amount is achieved or a specific
duration passes.

Fig. 8(bottom) models the dynamical system. The first two
bifurcations are for penalizing the corresponding actions.
Each flow control skill (tipping and shaking) is decomposed
into two dynamical models (Fflowc ∗ and Famount ). This
is because the decomposition makes the modeling easier
as discussed in [20], and we can share a common model
Famount . Fflowc ∗ estimates how the flow happens by the
skill, and Famount estimates how the flow affects the poured
and spilled amounts. Thus Fflowc ∗ depends on each skill but
Famount can be common. We can train Famount with the
samples of both tipping and shaking. The planning is done
at the beginning and at the node n3 where the trial-and-error
loop starts. Note that the dynamical system does not repre-
sent the trial-and-error loop because the planning assumes
the pouring is completed with a single skill selection.

We consider 19 types of state variables including container
position, target amount, material property, mouth size, and
flow position. The total dimensionality of the state vectors
is 49. There are 6 types of action parameters including
grasping, pouring position, and parameters for each skill.
The total dimensionality of the action parameters is 8. Not

http://www.ode.org/


Fig. 8. State machine of pouring behavior (top) and its graph-structured
dynamical system (bottom). F∗ denotes an edge dynamical system, and R∗
denotes a reward model.

all of the state vectors and action parameters are used
in each dynamical system. The state vectors that do not
affect a dynamical system are omitted. Consequently the
dimensionalities of the edge dynamical systems vary up to
18. These are represented as a super-state-action dictionary.

We use a reward function defined as follows:

R =− 100(min(0, arcv − atrg))
2 − 10(max(0, aspill))

2

− (max(0, arcv − atrg))
2 (8)

where arcv is an amount poured into the receiving container,
atrg is a target amount, and aspill is a spilled amount. This
reward function means that a big penalty is given for arcv <
atrg since it is the first priority, a medium penalty is given
for aspill > 0 since spillage should be avoided, and otherwise
arcv being close to atrg is better. aspill ≥ is always satisfied in
observation data, but the learned model might estimate aspill
as a slight negative value. Thus we are using max(0, aspill).

A. On-line Learning and Learning Scheduling

We use on-line learning, i.e. the robot plans actions with
the latest models, and executes the actions and updates the
models according to the results. If no model is available, the
robot takes random actions. Each episode is defined as an
entire pouring sequence including the trial-and-error loops.

Through the preliminary experiments, we noticed that
scheduling learning is useful to avoid local optima. We
consider two types of scheduling. (1) Reward shaping:
modifying the reward functions according to the number of
episodes. (2) Setup scheduling: controlling the experimental
setups. Note that an alternative approach to avoid local
optima is increasing the exploration randomness, where these
supervisory signals would be removed. Since we will use our
method with real robots, here we explore efficient solutions.

B. Experiments and Results

First we consider a setup referred to as SETUP1: water-
like viscosity and high bouncing parameters (bnc), and wide
mouth size of the source container (0.23). Note that tipping
is the best skill in this setup. This is the same as our previous
work [20], [18], but the difference is that these experiments
have multiple skills. Thus the robot has to learn to select a
skill as well as to tune skill parameters.

We use pre-trained dynamical models other than Fflowc ∗
and Famount as these dynamical models are similar to
those in [18] and can be learned easily. We compare two
conditions: PT0-Rnone: no reward shaping, and PT0-Rtip:

Fig. 9. Poured amount per episode in SETUP1. A moving average filter
with 5 episode window is applied.

tipping-biased reward shaping. The reward shaping of PT0-
Rtip is guiding the correct skill (tipping). More specifically,
from 1st to 10th episode, we use R+10 if tipping is selected
otherwise R, and after 11th episode, we use R.

Fig. 9 shows the results of 10 runs. Each curve shows an
average of poured amount per episode. The target amount
is 0.3. The poured amount of PT0-Rtip is closer to the
target than PT0-Rnone. In some runs of PT0-Rnone, shaking
was chosen after learning. This was because shaking was
good for early adaptation to the first objective, achieving
arcv ≥ atrg, as defined in the reward Eq. (8). The excess
amount is penalized, so tipping is better than shaking. But
since that penalization is the third priority, there were a few
runs where the robot tended to use shaking and dynamical
models of tipping were not trained enough. The tipping-
biased reward shaping was useful to handle this issue. It
gained the tendency to select tipping in the early stage of
learning. As the result, the average poured amount of PT0-
Rtip is smaller than that of PT0-Rnone.

Next we investigate a setup referred to as SETUP2:
large viscosity (vsc), and narrow mouth size of the source
container (0.13). Shaking is the best skill in this setup. We
compare three conditions: PT0-Rnone: Pre-trained dynamical
models other than Fflowc ∗ and Famount , no reward shaping.
PT1-Rnone: Pre-trained with SETUP1, no reward shaping.
PT1-Rshake: Pre-trained with SETUP1, shaking-biased re-
ward shaping. The shaking-biased reward shaping is that
from 1st to 10th episode, we use R+10 if shaking is selected
otherwise R, and after 11th episode, we use R. PT1-Rnone
and PT1-Rshake are examples of the setup scheduling.

Fig. 10 shows the learning curves, i.e. sum of rewards
per episode, that are averages of 10 runs. PT1-Rnone and
PT1-Rshake had more prior knowledge than PT0-Rnone.
Especially Famount was learned in SETUP1, which would
generalize in SETUP2. What PT1-Rnone and PT1-Rshake
did not have are the training samples of Fflowc ∗ in SETUP2.
Thus these converged faster than PT0-Rnone. The reward
shaping was also useful in this setup. However since shaking
is only the adequate solution in this setup (tipping does not
work), all runs of PT1-Rnone (no reward shaping) did not
converge to poor local optima.

The variance of PT1-Rshake was increasing after 10th
episode. This was because the reward-shaping changed. The
reason why the variance of PT1-Rshake is greater than that
of PT1-Rnone around the 10th episode is that tipping in this
setup is not well-trained with PT1-Rshake in the 0th to 9th
episodes because of the shaking-biased reward shaping. Thus
in some runs, the robot tried tipping after the 10th episode.



Fig. 10. Learning curves (sum of rewards per episode) of SETUP2. A
moving average filter with 5 episode window is applied.

Fig. 11. Learning curves (sum of rewards per episode) of the general
pouring setup. A moving average filter with 5 episode window is applied.

Fig. 12. Skill selections in different situations (mouth size of source
container, material type). The shape of the points show the skill (tipping,
shaking). Setups for pre-training (SETUP1, SETUP2) are also shown. The
size of point shows an error of poured amount.

Finally we explore the generalization ability of our method
in a general pouring setup: four material types (wat, bnc, vsc,
vsc+), and various mouth sizes of the source container (0.11
to 0.25). We consider three conditions including the setup
scheduling. PT0-Rnone: Pre-trained dynamical models other
than Fflowc ∗ and Famount , no reward shaping. PT1-Rnone:
Pre-trained with SETUP1, no reward shaping. PT2-Rnone:
Pre-trained with SETUP1 and SETUP2, no reward shaping.

Fig. 11 shows the learning curves, i.e. sum of rewards per
episode, which are averages of 10 runs. PT1-Rnone had more
prior knowledge than PT0-Rnone, and PT2-Rnone had more
than PT1-Rnone. The speed of the convergence seems to be
proportional to the prior knowledge. Especially PT2-Rnone
performs well in the early stages although it pre-trained only
in specific situations (SETUP1, SETUP2). The variance of
the learning curves is greater than that of Fig. 10. This is
because in Fig. 11, the rewards from different setups are
shown together.

Although the three conditions converged to similar perfor-
mance level, their details were slightly different. The graphs
in Fig. 12 show which skill was selected in a situation. Each

graph plots 20 samples of all runs after convergence of
learning curve. Each condition had a different tendency. In
PT1-Rnone and PT2-Rnone, the skill selection was biased
by the pre-training setups. In the viscous materials (vsc,
vsc+) with a narrower mouth size, shaking was dominant
regardless of the pre-training. In the highly bouncing material
(bnc) case, tipping was dominant regardless of the pre-
training. Since the learning curves in Fig. 11 converged to
close values, there appears to be no convergence to poor
local optima.

VIII. CONCLUSION

We proposed a stochastic differential dynamic program-
ming for graph-structured dynamical systems. We introduced
the idea of frame-and-slots based on traditional artificial in-
telligence researches to represent a large state-action vector.
The proposed method was applied to a simulated pouring
task and showed that our method generalized over the
material property (viscosity) and the source container shape
(mouth size). Future work includes verifying our method in
real pouring tasks by robots.

REFERENCES
[1] A. Yamaguchi, C. G. Atkeson, and T. Ogasawara, “Pouring skills with

planning and learning modeled from human demonstrations,” Interna-
tional Journal of Humanoid Robotics, vol. 12, no. 3, p. 1550030, 2015.

[2] D. Mayne, “A second-order gradient method for determining optimal
trajectories of non-linear discrete-time systems,” International Journal
of Control, vol. 3, no. 1, pp. 85–95, 1966.

[3] P. H. Winston, Artificial Intelligence (3rd Ed.). Addison-Wesley
Longman Publishing Co., Inc., 1992.

[4] Y. Pan and E. Theodorou, “Probabilistic differential dynamic program-
ming,” in Advances in Neural Information Processing Systems 27.
Curran Associates, Inc., 2014, pp. 1907–1915.

[5] S. Levine and V. Koltun, “Variational policy search via trajectory
optimization,” in Advances in Neural Information Processing Systems
26. Curran Associates, Inc., 2013, pp. 207–215.

[6] M. D. Zeiler, “ADADELTA: an adaptive learning rate method,” ArXiv
e-prints, no. arXiv:1212.5701, 2012.

[7] J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement learning
in robotics: A survey,” International Journal of Robotics Research,
vol. 32, no. 11, pp. 1238–1274, 2013.

[8] E. Theodorou, J. Buchli, and S. Schaal, “Reinforcement learning
of motor skills in high dimensions: A path integral approach,” in
ICRA’10, may 2010, pp. 2397–2403.

[9] J. Kober and J. Peters, “Policy search for motor primitives in robotics,”
Machine Learning, vol. 84, no. 1-2, pp. 171–203, 2011.

[10] S. Schaal and C. Atkeson, “Robot juggling: implementation of
memory-based learning,” in ICRA’94, 1994, pp. 57–71.

[11] J. Morimoto, G. Zeglin, and C. Atkeson, “Minimax differential dy-
namic programming: Application to a biped walking robot,” in the
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS’03), vol. 2, 2003, pp. 1927–1932.

[12] I. Lenz, R. Knepper, and A. Saxena, “DeepMPC: Learning deep
latent features for model predictive control,” in Robotics: Science and
Systems (RSS’15), 2015.

[13] E. Magtanong, A. Yamaguchi, K. Takemura, J. Takamatsu, and T. Oga-
sawara, “Inverse kinematics solver for android faces with elastic skin,”
in Latest Advances in Robot Kinematics, Innsbruck, Austria, 2012, pp.
181–188.

[14] E. W. Aboaf, C. G. Atkeson, and D. J. Reinkensmeyer, “Task-level
robot learning,” in IEEE International Conference on Robotics and
Automation, 1988, pp. 1309–1310.

[15] E. W. Aboaf, S. M. Drucker, and C. G. Atkeson, “Task-level robot
learning: juggling a tennis ball more accurately,” in the IEEE Interna-
tional Conference on Robotics and Automation, 1989, pp. 1290–1295.

[16] A. Yamaguchi and C. G. Atkeson, “Model-based reinforcement learn-
ing with neural networks on hierarchical dynamic system,” in the
Workshop on Deep Reinforcement Learning: Frontiers and Challenges
in IJCAI’16, 2016.

[17] V. Mnih, K. Kavukcuoglu, D. Silver, et al., “Human-level control
through deep reinforcement learning,” Nature, vol. 518, no. 7540, pp.
529–533, 2015.

[18] A. Yamaguchi and C. G. Atkeson, “Neural networks and differen-
tial dynamic programming for reinforcement learning problems,” in
ICRA’16, 2016.

[19] S. J. Russell and P. Norvig, Artificial Intelligence: A Modern Approach.
Prentice-Hall, Inc., 1995.

[20] A. Yamaguchi and C. G. Atkeson, “Differential dynamic programming
with temporally decomposed dynamics,” in Humanoids’15, 2015.

[21] M. C. Koval, N. S. Pollard, and S. S. Srinivasa, “Pre- and post-
contact policy decomposition for planar contact manipulation under
uncertainty,” The International Journal of Robotics Research, vol. 35,
no. 1-3, pp. 244–264, 2016.


	Introduction
	Differential Dynamic Programming for Graph-Structured Dynamical Systems
	Problem Formulation
	Graph-Structure Analysis
	Forward and Backward Computation
	Multi-start Gradient-based Optimization

	Super-State-Action Dictionary (SSA)
	Toy Example (1)
	Learning Dynamics
	Toy Example (2)
	Simulation Experiments of Pouring
	On-line Learning and Learning Scheduling
	Experiments and Results

	Conclusion
	References

