
May 15, 2015 22:11 WSPC/INSTRUCTION FILE ijhr2015a-f

International Journal of Humanoid Robotics
© World Scientific Publishing Company

POURING SKILLS WITH PLANNING AND LEARNING

MODELED FROM HUMAN DEMONSTRATIONS

AKIHIKO YAMAGUCHI

The Robotics Institute, Carnegie Mellon University,
5000 Forbes Avenue, Pittsburgh PA 15213-3890, United States,

Graduate School of Information Science, Nara Institute of Science and Technology,
8916-5, Takayama, Ikoma, Nara 630-0192, Japan,

info@akihikoy.net

CHRISTOPHER G. ATKESON

The Robotics Institute, Carnegie Mellon University,
5000 Forbes Avenue, Pittsburgh PA 15213-3890, United States,

cga@cs.cmu.edu

TSUKASA OGASAWARA

Graduate School of Information Science, Nara Institute of Science and Technology,
8916-5, Takayama, Ikoma, Nara 630-0192, Japan,

ogasawar@is.naist.jp

Received (Day Month Year)
Revised (Day Month Year)

Accepted (Day Month Year)

We explore how to represent, plan, and learn robot pouring. This is a case study of a
complex task that has many variations, and involves manipulating non-rigid materials
such as liquids and granular substances. Variations of pouring we consider are the type
of pouring (such as pouring into a glass or spreading a sauce on an object), material,

container shapes, initial poses of containers, and target amounts. The robot learns to
select appropriate behaviors from a library of skills, such as tipping, shaking, and tapping
to pour a range of materials from a variety of containers. The robot also learns to select
behavioral parameters. Planning methods are used to adapt skills for some variations

such as initial poses of containers. We show using simulation and experiments on a PR2
robot that our pouring behavior model is able to plan and learn to handle a wide variety
of pouring tasks. This case study is a step towards enabling humanoid robots to perform
tasks of daily living.

Keywords: Pouring; learning from demonstration; learning from practice; planning.

1. Introduction

The goal of this work is to explore how to represent, plan, and learn complex tasks

that have many variations. We want to enable robots to go beyond manipulating

rigid bodies. Pouring, a form of manipulating liquids and granular materials, is

1

May 15, 2015 22:11 WSPC/INSTRUCTION FILE ijhr2015a-f

2 Akihiko Yamaguchi, Christopher G. Atkeson, and Tsukasa Ogasawara

Fig. 1. Conceptual illustration of our learning from demonstration scheme. Left: learning from

human demonstrations, Right: behavior generation and refinement.

an example of such a task. Materials we pour range from water to more viscous

liquids such as shampoo. In making a pizza, a number of pouring skills are used:

pouring cheese from a bag, pouring vegetables from a bowl, pouring tomato sauce

with shaking or squeezing a bottle, pouring seasonings, and so on. Pouring can

involve tipping, shaking, and tapping a container. Pouring has different variations

involving many materials, container shapes, contexts, initial poses of containers,

target amounts, and obstacles. In order to handle these variations, we humans use

many strategies or skills.

We want robots to help us in daily activities involving non-rigid materials. Ex-

amples include making pancakes 1, folding towels 2, and baking cookies 3. A common

challenge is handling variations of these tasks. Tools that have been developed for

this challenge include search-based planning algorithms 4, reinforcement learning

methods 1, and supervised learning methods. In our experience these tools will

solve a specific version of a task and have limited generalization ability. We need a

methodology that combines planning and learning and has wider generalization.

In this case study we informally model robot behaviors on human examples,

exploring a learning from demonstration approach 5. Phases of pouring include a

preparation process (grasping a source container and moving the container to the

receiving container’s position), controlling the material flow, and a post pouring

process (putting the source container at a final position). The most difficult thing

to model is flow control, since it is a manipulation of complex materials, such as

liquid and granular materials. Humans use skills such as shaking for flow control.

We think humans learn those skills, including how to select a particular strategy

and adjusting behavioral parameters, such as shaking angle. In addition, humans

can adapt their skills to a new situation, i.e. a new combination of containers and

material; as well as improving their performance through learning from practice.

We consider a behavior model consisting of a library of skills, and planning and

learning methods. Our architecture is illustrated in Fig. 1. Though our goal is au-

tomating the entire architecture, in this paper we focus on the right part, and do

the left part manually; i.e. we model the skills manually. The skills are modeled with

a well-known representation, finite state machines. Finite state machines represent

May 15, 2015 22:11 WSPC/INSTRUCTION FILE ijhr2015a-f

Pouring Skills with Planning and Learning Modeled from Human Demonstrations 3

both a behavioral structure (grasping, moving container, etc.) and feedback control

(e.g. tipping until a target amount is achieved). Planning methods are introduced to

obtain some situation specific parameters such as grasp parameters, pouring loca-

tions, and so on. Learning from practice methods are introduced for skill selection,

for parameter adjustment, and for improving plan quality. Learning from practice

for skill selection is important for generalization of flow control since it is difficult

to model liquid or granular material dynamics.

We implemented the pouring behavior model on a PR2 robot and conducted

both simulation and robot experiments. We verified the generalization ability of

the model in terms of materials, container shapes, contexts, container locations,

and target amounts.

The most important finding of this case study is that in order to model a behavior

with wide generalization, it is a practical solution to store small skills (e.g. tipping,

shaking, grasping) in a library, and combine them for an entire task, using planning

and learning methods for selection and adjustment. Though we cannot say this

approach is the best, its practicality is verified by the robot experiments.

Section 2 provides an overview of our pouring model, and we compare it with re-

lated works in Section 3. In Section 4, we discuss human pouring behavior. Section 5

describes our modeling of pouring behavior. The details of learning and planning

methods are described in Section 6 and 7. Section 8 describes the experiments, and

we conclude in Section 9.

2. Overview of the Pouring Model

In this section, we describe the pouring variations considered, our assumptions, an

overview of our pouring behavior, and how generalization is achieved.

2.1. Pouring Variations

We consider following pouring variations:

Material type: We explore the effects of the type of material to be poured, such as

water, coke, sugar, coffee powder, tomato sauce, and shampoo. In the experiments

we use dried granular materials instead of liquid in order to avoid damage to the

robot.

Container shape: We use various shapes of source containers such as a cup, a bottle

with a small mouth, and a can.

Context : We consider multiple pouring contexts, including pouring a cup of water

during serving it to a user, and spreading sauce on a surface during making a pizza.

Context determines the goal of pouring.

Initial poses of containers: Initial positions and orientations of containers are var-

ied. Considering an orientation is important especially when pouring from a coke

can-like container whose mouth position is not at the center of the container top.

Target amount : Target amount of the poured material, such as 90% of the height

of a receiving container, is also varied.

May 15, 2015 22:11 WSPC/INSTRUCTION FILE ijhr2015a-f

4 Akihiko Yamaguchi, Christopher G. Atkeson, and Tsukasa Ogasawara

2.2. Assumptions

We assume the following about the pouring task:

• The robot uses its left hand (if it has two arms).

• Each container is already opened (if it has a lid or top).

• A library of container models is given, where each model consists of a cylinder

for a graspable part and a polygon for the mouth. For the current work, labels of

container types and material types are given. Future work will obtain these from

perception.

• The amount of poured material into a receiving container is observable.

• The initial poses of the containers are observable.

2.3. Overview of the Pouring Behavior Model

The resulting behavior model has the following elements:

Finite state machines: Each skill, such as pouring by tipping, shaking, and tapping

is modeled with finite state machines that have two roles: feedback control and

procedural execution. For example in pouring by tipping, the state machine works

as a feedback controller where a current state such as a poured amount is observed,

and a control signal is computed accordingly. A general flow controller is modeled as

a hierarchical state machine using these skills. Each skill may have some parameters

for selection and adjustment.

Decomposing pouring behavior : The entire pouring behavior is decomposed into

several sub-skills and modeled by state machines, such as grasping and moving a

container. Such a decomposition is possible because the procedure of sub skills is

usually the same (moving an arm → grasping a container → moving the container

→ flow control → . . .). This decomposition is also compatible with a memory-based

approach to flow control, since the memorized skills are considered as decomposed

skills.

Planning methods: Similarly, rather than planning many steps of the pouring be-

havior at once, we separate it into several small planning problems, such as grasping,

pouring location, and path. The benefit is that we can reduce the computational

cost of planning.

Learning from practice: We consider two types of learning methods: (1) direct pol-

icy learning for selection (e.g. skill selection) and for adjustment (e.g. shaking angle),

and (2) learning to improve planning where we update the evaluation function used

in planning, rather than the planned policy.

Unifying these elements, we can achieve a pouring behavior model with wide

generalization in terms of the variations mentioned above. Table 1 summarizes how

much each element contributes to each generalization ability. Since some combina-

tions of material types and container shapes require different flow control skills, state

machines representing skills and skill selection learning are essential. Learning ad-

justment methods may also improve performance. Planning methods are necessary

May 15, 2015 22:11 WSPC/INSTRUCTION FILE ijhr2015a-f

Pouring Skills with Planning and Learning Modeled from Human Demonstrations 5

Table 1. How much each element contributes to generalization.

Method
Material
type

Container
shape Context

Initial
poses

Target
amount

State machines for skills ** ** ** * **
Planning methods ** **
Learning for planning methods * *

Learning for selection ** **
Learning for adjustment * *

** : Plays an essential roll.
* : Plays an important roll in improving performance.

since container shape affects the grasp parameters, hand path, etc. The difference

of contexts is handled by state machines. The variation of initial poses is mainly

handled by planning methods, but a state machine may increase the success rate in

different initial poses; for example, the gripper position is improved by visual feed-

back control represented with a state machine. The difference of target amounts is

handled by state machines for feedback control of the target amount observation.

The learning method to improve planning improves plan quality.

3. Related Works

3.1. Pouring Robots

There are several attempts to enable robots to learn pouring from human demon-

strations 6,7,8,9,10,11,12. However, they typically focus on only a part of the entire

pouring problem. For example, Tamosiunaite et al. proposed a method to optimize

the source container trajectory and its goal position for a pouring task 8. This

method may be able to generalize at a certain level, but we cannot expect gen-

eralization of source container shapes and material types. Rozo et al. proposed a

method to teach a robot to pour using force information, and models the human

demonstration with a parametric hidden Markov model (HMM) 11. Using HMM-

like models is useful to encode a human demonstration automatically, but it is just

a part of the entire pouring problem. Pastor et al. made a robot learn dynamic

movement primitives (DMPs) for pouring behavior from human demonstrations 7.

Their method is limited to generalization of goal positions. Kroemer et al. proposed

a method for robots to learn behaviors like pouring from human demonstrations
10. Their method enables the robots to learn behaviors for novel objects through

trial and error. Brandl et al. proposed to use warped parameters for automatic

generalization of behaviors between differently shaped objects 12. Those methods

can generalize in terms of container shapes, but it may be difficult to generalize

behaviors for material types where different skills are used.

Therefore, although our approach relies on manual skill implementation, the

obtained pouring behavior has a large generalization ability in terms of several

variations of pouring as discussed in Section 2. Generalizing behaviors for material

May 15, 2015 22:11 WSPC/INSTRUCTION FILE ijhr2015a-f

6 Akihiko Yamaguchi, Christopher G. Atkeson, and Tsukasa Ogasawara

types is difficult; our solution is using a library of skills like tipping and shaking,

and selecting automatically an appropriate skill.

3.2. Planning and Learning Methods

The learning from practice of this paper is close to the “learning from observations

and practice using behavioral primitives” framework proposed by Bentivegna 13.

Another similar approach is found in the “learning parameterized skills” frame-

work 14.

Kaelbling et al. developed a hierarchical planning method where symbolic-level

task planning and motion planning are integrated 15. They are exploring variations

of planning that have a hierarchical structure, while our planning variations are

independent of one another.

There is some work on improving planning through learning from practice. For

example, Zucker et al. proposed Reinforcement Planning where a cost function for

the planner is improved through actual execution 16. In this paper, we present a

similar but simpler solution, but it is also possible to use their algorithms.

Bollini et al. proposed the BakeBot which can analyze a recipe, plan a sequence

of actions where motion primitives, such as mix, pour, and bake, are used, and

execute the sequence 3. They experimentally demonstrated that their system could

successfully follow two different recipes with a real robot. Though their direction

and ours are similar, this paper includes learning methods, combines them with

planning, and considers a larger skill library.

4. Discussions of Human Pouring

We discuss the features of human pouring demonstrations. First, we focus on flow

control, and then we discuss the entire pouring process.

4.1. Flow Control

Pouring by Tipping

We use the setup shown in Fig. 2 to track human demonstrations. A human subject

pours from a source container (source) to a receiver container (receiver) where the

orientation of the source and the amount of material in the receiver are measured by

RGB cameras. The material in the source is dried peas which behave like water, but

are more convenient for measuring the amount and for robot experiments especially

when spills occur. The human subject pours the material to a target amount of 0.5

which is half of the receiving container height.

Fig. 3 shows a human demonstration of pouring where the amount in the re-

ceiving container and the orientation are plotted. We can see that there are three

phases in pouring. Phase 1: rotating the source container quickly until flow is ob-

served. Phase 2: after flow starts, the human rotates the source container slowly

May 15, 2015 22:11 WSPC/INSTRUCTION FILE ijhr2015a-f

Pouring Skills with Planning and Learning Modeled from Human Demonstrations 7

Fig. 2. Setup to measure a human demon-
stration.

Fig. 3. Result of a human demonstration. The

amount trajectory and the orientation (Theta)
trajectory are plotted.

(a) Shaking A. (b) Shaking B. (c) Tapping.

Fig. 4. Human demonstrations of shaking and tapping.

until the amount reaches the desired target. We found that once flow starts, it con-

tinues without rotating the container. Phase 3: after reaching the target amount,

the human moves the source container to the final pose.

From the human demonstrations, we found that during pouring, the mouth edge

of the source container did not move much, while the grasping point moved more.

Modeling the movement of a point on the mouth edge is easier than modeling the

movement of the gripper.

Pouring by Shaking and Tapping

Humans use different strategies if pouring by tipping does not work. For example

when the material is jamming inside the container or pouring slowly, humans shake

and/or squeeze the container. When humans want to pour a small amount (espe-

cially of granular materials), they may tap the container. In this paper, we consider

shaking and tapping skills.

A shaking skill is used for jammed material or for viscous liquids. Through hu-

man demonstrations, we found that there are some variations in shaking behaviors;

May 15, 2015 22:11 WSPC/INSTRUCTION FILE ijhr2015a-f

8 Akihiko Yamaguchi, Christopher G. Atkeson, and Tsukasa Ogasawara

Fig. 5. Examples of pouring behaviors of humans. Left: situations, Right: human behaviors.

for example, shaking vertically, shaking at an angle, shaking linearly, and shaking

rotationally. Fig. 4(a) and 4(b) show the examples of shaking motions demonstrated

by a human, where the mouth of a bottle is modified to jam material.

Tapping is used to pour material accurately; for example, pouring coffee powder.

Fig. 4(c) shows a human demonstration of tapping, where the human is holding a

container with the left hand, and tapping the container with a right finger.

4.2. Pouring Variations

Next, we discuss different variations of pouring. Here we conducted an informal user

study where we asked four people to perform pouring in four setups as illustrated

in Fig. 5, took videos, and analyzed them manually. We asked each subject to use

only the left hand in order to decrease the modeling complexity.

Setup 1

A source container is put around a receiving container at various locations (A, B,

C). In every location, the subjects moved the left hand from the initial pose to

a grasping pose of the source container, and moved the source container toward

the pouring location on the receiving container. In each movement, the subjects

avoided collisions between their body (including grasped objects) and objects in

the environment.

An interesting thing we found is that all subjects poured from the left side of the

receiving container in the A and C locations, and in the B location, two out of four

subjects poured from the left side and two subjects poured from between the rear

and the left side. We believe this maintains controllability during actual pouring.

If a human pours from right side of the receiving container using the left hand, the

posture during pouring would be unfamiliar and uncomfortable to the human.

May 15, 2015 22:11 WSPC/INSTRUCTION FILE ijhr2015a-f

Pouring Skills with Planning and Learning Modeled from Human Demonstrations 9

Setup 2

The height of the source container is taller than that of the receiving container. In

Section 4.1, it was found that the pouring position on the receiving container does

not move much during actual pouring. But in Setup 2, the subjects started pouring

at a certain height, then moved the mouth of the source container downward during

pouring. We believe this occurs because one cannot start pouring with the lower

height because the bottom of the source container collides with the table. Moving

the pouring position downward avoids spilling.

Setup 3

The mouth (hole) of the source container is not located at the center of the container,

as in a coke can, and initially the position of the hole is on the opposite side of the

receiving container. Since the subjects were asked to use only their left hands, each

subject manipulated the source container to change the hole position to the right

side, then started pouring. Two out of four subjects manipulated the container inside

their hands, and two subjects rotated the container by putting it on the table. We

believe the purpose of such re-grasping is to change the infeasible pouring setup to

a feasible one.

Setup 4

We explored spreading materials onto several types of receivers that have different

shapes (e.g. hot dog bread, pizza, and square bread). We asked the subjects to

illustrate patterns on a paper with a pen by imagining spreading sauce on breads

from a thin tip container. The subjects adapted the spreading trajectories to each

receiver’s shape with various patterns, for example B-1 and B-2, and C-1 and C-2.

5. Modeling Pouring

Based on the human demonstrations, we discuss how to model pouring behavior

for a robot. We model the behavior with finite state machines that work as both a

control procedure (e.g. tipping until the target amount is poured) and a structural

procedure (e.g. moving hand, grasping, moving container, . . .). In this section, first

we briefly describe our finite state machines, then we model flow control. Finally

we model the entire pouring behavior.

5.1. Finite State Machines

Pouring consists of several steps: reaching to a source container, grasping it, moving

the source container to a receiving container, actual pouring (flow control), mov-

ing the source container to a position, releasing it, and moving the hand to a final

position. We use a finite state machine to represent the behavior. Since there are

May 15, 2015 22:11 WSPC/INSTRUCTION FILE ijhr2015a-f

10 Akihiko Yamaguchi, Christopher G. Atkeson, and Tsukasa Ogasawara

Fig. 6. Illustration of tipping model.

high-level procedures, such as a preparation and flow control, and detailed proce-

dures, such as shaking, we use hierarchical finite state machines.

In addition to this, we introduce parallel state machines. For example in Setup

2 of Section 4.2, the behavior representation can be simplified by using a parallel

model. One state machine controls the flow, and another state machine controls the

height of the source container’s mouth.

5.2. Flow Control Skills

A core skill in pouring is flow control where the robot handles non-rigid materials.

We model flow control based on human demonstrations, where we assume that the

robot starts to pour when the robot is grasping a source container and holding it

near the receiving container.

5.2.1. Tipping

According to the human demonstrations, humans use different strategies based on

the relative height of the source container and the receiving container. Since a

smaller source container case is simpler, we consider that case first. The other

case is considered in the general flow control section (5.2.4). We can assume that

during flow control, the edge point of the source takes a constant value, and only

the orientation changes to control the flow, as illustrated in Fig. 6. The source

container moves mostly in a 2-dimensional plane, so the orientation is modeled by

a 1-dimensional variable, θ.

As we mentioned in Section 4.1, there are three phases in the human demon-

stration. We model this behavior using a finite state machine. When no flow is

observed, the robot increases θ (Phase 1). If flow is observed, the robot slows down

the movement (Phase 2). If the target amount is achieved, the robot moves θ to the

final value (Phase 3). In some demonstrations, we found that if the material starts

flowing, it continues to flow without increasing θ. Thus, in Phase 2, we increase θ

only when flow is not observed, and keep the same value when flow is observed.

May 15, 2015 22:11 WSPC/INSTRUCTION FILE ijhr2015a-f

Pouring Skills with Planning and Learning Modeled from Human Demonstrations 11

Fig. 7. Finite state machines for pouring. Each state consists of a set of condition and action
pairs. There are special notations: else denotes a condition that is satisfied if the other conditions

are false, entry denotes an entry action that is performed when entering the state. th denotes a
threading execution which realizes parallel state machines. The stop condition state “Common”
is used in tipping, shaking A and B, and tapping, which decides to stop if a target amount atrg is
achieved, or a maximum duration tmax is exceeded.

A state machine for tipping is illustrated in Fig. 7. We assume θ = 0 at the initial

pose, and θ should be less than θmax where the source container is upside down. The

“To Init” state is used when θ is not zero at the state. This happens when the robot

tries again from the initial pose due to jamming, or the pouring skill is combined

with other skills. The other states, ”Find Flow”, ”Pour”, and ”Stop”, correspond

to Phases 1 to 3 respectively. The utility functions and the constants used in the

tipping state machine are: ctrl(θ̇): control θ with its velocity θ̇, flow(): true if

flow observed, noflowin(∆t): true if no flow observed in ∆t, and θ̇max: maximum

velocity of θ. Since during grasping, the gripper pose corresponds to the grasp pose,

we can compute the edge point in the wrist frame. Using an inverse kinematics

solver for the wrist link, we can control θ around the edge point. From the initial

pose of the source container, we can estimate the rotation axis.

We expect generalization from this state machine in terms of target amounts, as

well as initial amounts in the source, source container shapes, and material types.

In the experiments, we investigate these generalization abilities.

May 15, 2015 22:11 WSPC/INSTRUCTION FILE ijhr2015a-f

12 Akihiko Yamaguchi, Christopher G. Atkeson, and Tsukasa Ogasawara

5.2.2. Shaking

We model the two types of shaking shown in Fig. 4(a) and 4(b) since they have

good performance. We refer to them as shaking A and B respectively. Shaking A

is a vertical motion while holding the source container upside down. Shaking B is

shaking at an angle where the flow is maximized.

Shaking A and B are modeled with finite state machines as illustrated in Fig. 7.

In shaking A, θ is increased until the source container becomes upside down (“To

Max”). During “To Max”, any flow is ignored other than atrg is achieved. Then

a shaking motion starts. In shaking B, θ is increased until some flow is observed,

then a shaking motion starts. In these state machines, shakeA() denotes the shaking

A motion where the source is moved in vertical direction, and shakeB(ϕ) denotes

the shaking B motion where the shaking direction is modified horizontally by an

angle parameter ϕ, [sin(ϕ), 0,− cos(ϕ)] defined in the source container’s frame. The

parameter ϕ is chosen to be suitable for the current situation by a learning method

described in Section 6.

5.2.3. Tapping

Reproducing a tapping motion with a robot is a bit difficult unless the robot can

move a gripper or finger rapidly. The PR2 can “tap” by touching the right gripper

to the source container held by the left gripper, and then vibrating the right gripper.

Unfortunately the vibration is fairly slow.

The tapping state machine is illustrated in Fig. 7. This state machine is more

complicated compared to the others since the tapping includes dual-gripper motions.

In preliminary experiments, we found that the initial flow is much larger than the

amount poured by tapping. Thus, we design the state machine so that it can control

the initial flow accurately. The utility functions used in the tapping state machine

are: rtotap(): move the right gripper to the tapping pose, rtoinit(): move the right

gripper to the initial pose, elapsed(∆t): true if the elapsed time after entering

the state is greater than ∆t, vibrate(): perform vibrating motion. Note that in

the tapping state machine, the “Stop” state in “Common” has an entry action:

rtoinit().

5.2.4. General Flow Control

We model a general flow control where the tipping and shaking A and B skills are

unified. The basic idea is defining a higher-level state machine which executes those

skills selectively. Selecting a skill for each situation (container shape and material

type) is the difficult part of this approach. We use learning and discuss the detail

in Section 6. Skill selection and its learning are introduced into the state machine

of the general flow control by functions select(i) and update(i). Once skill i is

selected, i is executed in the usual state machine fashion.

The state machine for general flow control (“Flow Ctrl”) is illustrated in Fig. 7.

May 15, 2015 22:11 WSPC/INSTRUCTION FILE ijhr2015a-f

Pouring Skills with Planning and Learning Modeled from Human Demonstrations 13

This is a higher-level state machine, where the individual state machines are used

as subordinal state machines. Basically, [BEGIN] and [END] of each lower-level

state machine are connected to the “Select” state of the flow control state machine.

The “Stop” state of each subordinal state machine is removed and the terminal

condition is directly connected to “Select”, since every subordinal state machine is

designed to be able to start at any value of θ.

In addition, we consider the situation of Setup 2 in Section 4.2. When the source

container is taller than the receiving container, humans take a different strategy.

In such a situation, humans move the mouth of the source container vertically as

we described in Setup 2 of Section 4.2. The purpose of this vertical movement may

be to avoid collision between the source container and the table, so we can model

this movement independently from flow control by using a parallel state machine.

In the “Start” state of “Flow Ctrl” in Fig. 7, the controller for the mouth height

(headctrl()) is executed in parallel, then a skill suitable for the current situation

is selected in the “Select” state. Here, headctrl is a simple control modeled with

a state machine: it moves the source container toward a target height or until the

container is too close to the table. Note that this height control also covers the

situation where the source container is smaller than the receiving container.

5.3. Modeling the Complete Pouring Behavior

In this section we model the entire pouring behavior. We consider its procedu-

ral representation, including timing to execute several types of planning schemes,

i.e. grasping, pouring locations, collision free paths for arm movement (Setup 1 of

Section 4.2), and re-grasping (Setup 3). The details of these planning methods are

described in Section 7.

The pouring procedure is represented with a state machine “Pouring”, illus-

trated in Fig. 7. The “Pouring” state machine consists of three steps: a preparation

process (“Preparation”) where the robot grasps a source container and moves it

to the receiving container position, flow control (“Flow Ctrl”) mentioned above,

and the post process (“Post Proc”) where the robot moves the source container to

a final destination. Each step is modeled with state machines, also illustrated in

Fig. 7. The utility functions used in those state machines are: plangrasp(): execute

grasp pose planning for the source container, pregrasp(): execute a pre-grasping

motion which is a state machine to move the gripper from a current pose to the

planned grasp pose, grasp(): execute a grasping motion to grasp the source con-

tainer, planpour(): execute pouring location planning for the source and a receiv-

ing container, regrasp(): execute a re-grasping planning and a re-grasping motion,

prepour(): execute a pre-pouring motion which is a state machine to move the grip-

per grasping the source container to the pouring location of the receiving container,

flowctrl(): execute flow control where several skills like pouring by tipping and

shaking are used, postpour(): execute a post-pouring motion which is the opposite

of the pre-pouring motion, release(): execute a releasing motion where the grip-

May 15, 2015 22:11 WSPC/INSTRUCTION FILE ijhr2015a-f

14 Akihiko Yamaguchi, Christopher G. Atkeson, and Tsukasa Ogasawara

per is opened to release the source container, postgrasp(): execute a post-grasping

which is the opposite of the pre-grasping motion.

5.4. Spreading Model

We consider a spreading variation of pouring including spreading pattern variations

mentioned in Setup 4 of Section 4.2.

Spreading is almost the same as the pouring task. In both tasks, the purpose

is moving materials from a source container to a receiver. The difference is that

in spreading the goal is to cover the receiver surface (e.g. a slice of bread) with

the material. We call that two-dimensional trajectory on the surface a spreading

pattern.

Our procedural modeling of spreading is almost the same as the pouring model

shown in Fig. 7. There are two differences: (1) in the pouring location planning step,

a spreading pattern is also planned, and (2) the parallel state machine to control

the height of the source container (headctrl) is augmented by a control to follow

the spreading pattern. In spreading, we use only the tipping skill to control the flow

of the material. The speed to move the mouth is decided by the flow speed; on each

control time step, the desired speed is proportional to the flow speed.

6. Direct Policy Learning

The human demonstrations shown in Fig. 4(a) and 4(b) where the shaking skills

are used was a bit difficult for the human. We found several interesting behaviors.

First, the human tried some different skills that we are referring to as shaking A and

B. Since the human did not know the most suitable skill for the task, the human

searched for the best one through trial and error. The human also adjusted some

skill-related parameters such as shaking axis and speed.

We think this behavior is a kind of direct policy learning, where some policy

parameters are optimized from observed scores (rewards) in an on-line manner. We

introduce a parameter optimization architecture into the skill models so that the

robot can handle a wider range of pouring tasks.

In the following, we describe the problem setup, optimization methods, and the

architecture to introduce the optimization methods into the skill models. There are

many other choices to optimize the parameters, for example, using a reinforcement

learning method (e.g. 17). We are focusing on showing an entire solution to the

pouring problem, so we chose simple but practical learning methods.

6.1. Problem Specification

Though there are several objectives in the pouring task such as pouring reliably as

fast as possible and avoiding spills, we focus on pouring speed optimization. The

optimized parameters are, for example, skill selection, the shaking axis, and the

shaking speed. The problem is to maximize the pouring speed encoded by a score

May 15, 2015 22:11 WSPC/INSTRUCTION FILE ijhr2015a-f

Pouring Skills with Planning and Learning Modeled from Human Demonstrations 15

function with respect to these parameters. We do not have an analytical model

between the parameters and the score; the score can be obtained through actual

execution using the parameters.

There are two types of parameters to be optimized. One is a discrete parameter

that is selected from a set of options (e.g. a set of skills). The other type is continuous

parameters that are selected from a single or multi dimensional continuous space

(e.g. a shaking axis).

6.2. Optimization Methods

Since score functions like the pouring speed are noisy, we need to choose a robust op-

timization method. For continuous parameter optimization, we use the Covariance

Matrix Adaptation Evolution Strategy (CMA-ES) proposed by Hansen 18 whose

implementation is available on-linea. CMA-ES is an evolutionary algorithm that

does not require the gradient of the score function.

For the discrete parameter optimization problem, we use Boltzmann selection

(also known as the softmax selection) 19 to select an option where each option is

evaluated with an upper confidence bound (UCB). Though there are several versions

of the UCB, we use the sum of the expected score µ and its standard deviation σ 20.

µ and σ are updated by an exponential moving average scheme. The details can be

found in 21.

6.3. Architecture

We use these optimization methods in an on-line manner. An on-line parameter

optimization consists of three steps: (1) Selecting parameters to be used, (2) Using

the parameters and obtaining the score, and (3) Updating based on the score. A

natural way to integrate these steps in a state machine is treating them as actions

of the state machine.

The optimization method for skill selection is introduced to decide the skill

index i in the flow control state machine (Fig. 7). In this case, the selecting and the

updating steps are executed as the entry action of the “Start” state. The score is

the difference of the amount divided by the execution duration.

Note that the flow control state machine supports trial and error learning during

a single pouring trial. For example, if the material jams in the shaking A state

machine, it is detected by the noflowin(2) condition, and the state moves back to

the “Start” of the flow control. Thus, the skill selection can be updated and a new

skill selected.

We apply continuous parameter optimization to ϕ of the shaking B behavior. In

this case, the selecting and the updating steps are executed right before and right

after the shakeB(ϕ) action.

ahttps://www.lri.fr/~hansen/cmaes_inmatlab.html

https://www.lri.fr/~hansen/cmaes_inmatlab.html

May 15, 2015 22:11 WSPC/INSTRUCTION FILE ijhr2015a-f

16 Akihiko Yamaguchi, Christopher G. Atkeson, and Tsukasa Ogasawara

Fig. 8. Planned parameters in pouring.

7. Unified Planning and Learning

In this section, we describe various types of planning in order to realize the demon-

strated pouring behaviors of Section 4.2. The parameters to be planned are illus-

trated in Fig. 8. We also discuss how to improve the planning through learning from

practice.

7.1. Assumptions

In the following planning methods, we assume that we can use the current robot

posture (joint positions), the poses (positions and orientations) of the source and the

receiving containers, and the model parameters of the containers. Each container

is modeled with a cylinder for a graspable part, a polygon for the mouth, and a

bounding box for collision checking. The surface of a receiver for spread materials

(e.g. bread) is also modeled as a polygon.

We assume that the robot has an arm with a parallel gripper that has two

fingers. The direction of gravity is the negative z-axis in the robot base frame (the

torso frame). The robot uses the left arm (if it has two arms) and starts pouring

from the left side of the receiving container. We also assume that we can use a

collision model of the robot that includes self-collision and collision with objects.

7.2. Planning using Optimization

First we explore planning methods based on optimization. Important elements in

planning using optimization are (1) parameterization: variables used in planning;

and choosing the minimum number of parameters is important for computational

efficiency and reducing the number of local minima, e.g. three parameters are enough

for grasping a cylinder, and (2) an evaluation function: a function to compute a

score for a situation and a parameter vector. Examples of situations are the current

robot posture, container poses, and container types. Constraints on parameters (e.g.

collision) are included in the evaluation function; the return value is in {R, ϕ} where

ϕ denotes invalidity of the parameters in that situation.

When these elements are defined, we can apply a general optimization tool.

May 15, 2015 22:11 WSPC/INSTRUCTION FILE ijhr2015a-f

Pouring Skills with Planning and Learning Modeled from Human Demonstrations 17

Here we use CMA-ES 18. CMA-ES needs an initial guess. Since the evaluation

functions may not be feasible due to factors such as a collision, their structures may

be complicated. Our learning method mentioned later also makes the evaluation

functions more complicated. Thus, a good initial guess is important. Our solution is

that we prepare a database where many previous planning results are stored. These

points are the parameters and the situations that the robot actually used them.

First, we search for parameters from the database that have valid scores. These

scores are computed by the evaluation function with the parameters in the database

and the current situation. Then, we use the parameters that have the maximum

score as the initial parameters of the optimizer. If no valid parameters are found

in the database, we search several (e.g. 5) parameter vectors that have valid scores

randomly. We choose the best parameters for the initialization of the optimizer.

In the actual implementation, we are limiting the number of computations of the

evaluation function for speedup. After every successful plan execution, the plan

parameters, its score, and the situation are stored in the database.

We apply this planning framework to grasp pose, pouring location, path of

moving the arm, and re-grasping parameters.

7.2.1. Grasp Pose Planning

Grasp pose planning computes a suitable gripper pose to grasp a container. Let xg

denote the grasp pose of the container. Here we also consider a pre-grasping pose

xg0 that is a pose before grasping. The purpose of considering a pre-grasping pose is

to simplify the path planning to reach the grasp pose; we can use simpler collision

models of containers for path planning to reach the pre-grasping pose, while we

need more complicated models for path planning to reach the grasp pose.

Though a grasp pose xg has 6 DoF in general, we use three parameters for a

cylinder. Two are orientation parameters, and the last one is a height ratio. The

pre-grasping pose xg0 has no parameters; its orientation is the same as xg, and

the position is behind of xg (the direction of withdrawing the gripper) where the

displacement is 1.5 times of the cylinder width.

The evaluation has five aspects. (1) For the asymmetric container case (e.g. a

coke can), the center of the mouth is preferred to be on the right side of the gripper

(pouring side). (2) The current x, y direction of gripper is preferred to be close to

the x, y direction of the grasp pose. (3) The grasp pose is preferred to be parallel

to the table. (4) A margin of more than 3 cm is needed between the mouth and the

gripper. More than 5 cm is desirable. (5) xg and xg0 should be valid. We also check

for being collision free and IK solvable. From these aspects, the score is computed.

7.2.2. Pouring Location Planning

Pouring location planning computes a pouring location xpe on the source container

and a pouring location xpl on the receiving container. These locations include ori-

May 15, 2015 22:11 WSPC/INSTRUCTION FILE ijhr2015a-f

18 Akihiko Yamaguchi, Christopher G. Atkeson, and Tsukasa Ogasawara

entation; the x-axis of this local frame is considered as the tipping axis of the flow

control. Before flow control starts, xpe is moved to xpl. Similar to grasp pose plan-

ning, we also consider a pre-pouring location xpl0 on the receiving container that is

a pose before reaching xpl.

We assume that xpe is on the mouth edge; so its Cartesian position can be

parameterized with an angle. Its orientation is automatically decided by considering

three assumptions: the x-axis (tipping axis) is along the mouth edge, the z-axis

of the orientation is the vertical direction of the polygon plane, and the y-axis

corresponds with the vector from the center to the xpe position. xpe is parameterized

with a single variable. Similarly, xpl has an angle parameter on the receiver’s mouth

polygon, but its position is between the point on the mouth edge and the polygon

center. This ratio is also a parameter. Additionally, in order to create a margin,

its z position is increased 3 cm. The orientation of xpl is decided similarly as xpe,

then it is rotated with a small angle around the x-axis. This rotation is to create

an initial pouring posture; the angle is typically 45 degrees, but can be modified for

each container. There are three parameters in total.

The evaluation has three aspects. (1) The angle between the tipping axis of the

receiving container and the x-axis (forward) of the torso should be in the range

[−70, 70] degrees, 0 degree is the best. This is to pour from the left side. (2) The

angle between the tipping axis of the receiving container and the gripper should be

in the range [−45, 45] degrees, 0 degree is the best. (3) When the robot moves xpe

to xpl0, the state should be valid.

7.2.3. Path Planning

The purpose is to compute a collision-free path from a current gripper pose xcurr

to a target gripper pose xtrg. Though there are many algorithm like RRT 22, here

we use a simple method which is adequate for our situation.

For an x, y, z-trajectory, we use a Hermite cubic spline with four knot points that

are put on the same plane, and parameterized with five variables. The first knot

point is xcurr and the last is xtrg. The plane that includes xcurr and xtrg has one

DoF, rotation around the line between them; this angle is the first parameter. The

remaining parameters are used to decide the middle two knot points, so they are

two angles and two normalized distances. For the orientation trajectory, we simply

use a linear interpolation of the two orientationsb.

The evaluation considers that all sample points on the trajectory should be valid

and a shorter trajectory is better.

bSpecifically, for two quaternions q1, q2, first we compute an axis a and an angle ψ that rotate q1 to
q2. Then we linearly interpolate the angle from 0 to ψ (tψ, t ∈ [0, 1]) and compute an interpolated

orientation by rotating q1 with a and tψ.

May 15, 2015 22:11 WSPC/INSTRUCTION FILE ijhr2015a-f

Pouring Skills with Planning and Learning Modeled from Human Demonstrations 19

7.2.4. Re-grasping Planning

The purpose is to find a new position xput to put the source container when planning

the pouring location is hard. This is used to change the hole position of a coke can.

The ideal rotation angle can be computed easily; moving the hole to the right

side in the gripper. Let θput denote this angle. There are three parameters: the dis-

placement of x and y from the current position, and the displacement from the θput.

The evaluation considers the validities of xput, 10 cm above of xput, withdrawing

pose from xput, and a roughly estimated new grasp pose. These are used as via

points in the re-grasping motion.

7.3. Other Planning Schemes

Planning using optimization is a widely applicable approach, but robots need dif-

ferent types of planning to achieve the behaviors that the humans are doing. We

have applied an optimization based approach to path planning, however, if a robot

needs to plan a path in more complicated situations, this approach will not be ef-

ficient since the number of the parameters become large and it is hard to identify

the correct number of key points. For those cases, we can use a sampling based

planning approach like RRT.

Another path planning example is planning spreading patterns. We use a tem-

plate pattern and put many templates to cover the whole surface of the receiver.

The number of parameters is proportional to the number of templates, so applying

the optimization based approach is again inefficient.

Here we describe a simple approach for planning spreading patterns; we compute

an x, y-trajectory. We use a template pattern like a single cycle sine curve that has

two parameters: the amplitudes of the first and the second peaks. First, we compute

the center of the polygon, estimate the direction to repeat the template by applying

PCA to the polygon points, and find a start point. The start point is on a line

decided by the center and the direction, is inside the polygon, and is far from the

center. The amplitude parameters are iteratively optimized by fitting the template

so that amplitudes are maximized subject to the constraint that all sample points

on the trajectory are inside the polygon.

7.4. Adding Learning to Planning

We discuss how to improve planning through learning from practice. In direct pol-

icy learning (Section 6), discrete parameters (e.g. selecting a skill) and continuous

parameters (e.g. shaking axis) are learned from practice in order to adapt to a new

situation. A real number score is given as an evaluation of each parameter. Here we

introduce a similar learning architecture into our system. We start with discussing

the similarity of planning and learning.

In Section 6, we used a softmax-like method for learning discrete parameters,

and CMA-ES 18 for learning continuous parameters. The learning process of the

May 15, 2015 22:11 WSPC/INSTRUCTION FILE ijhr2015a-f

20 Akihiko Yamaguchi, Christopher G. Atkeson, and Tsukasa Ogasawara

softmax-like method is: (1) learning a lookup table of scores, (2) selecting a pa-

rameter based on the table, and (3) updating the table from actual execution. In

CMA-ES, a score function is approximated with a covariance matrix from samples

obtained through actual executions. We can regard the lookup table and the covari-

ance matrix as an evaluation function of the parameter. Selecting a parameter in

these learning methods is a sort of planning. Updating a score function (evaluation

function) is the core of these learning methods, which is missing in our planning

with optimization scheme.

Therefore, we introduce a simple method to update an evaluation function

through practice. The idea is to use bad examples obtained from actual execu-

tions in order to modify the evaluation function feval(p, s) where the arguments are

a parameter p and a situation s. The modification method is similar to the idea of a

radial basis function; if the parameter and the situation is close to a bad example,

the new evaluation is ϕ (invalid). Thus, the robot will not plan the same parame-

ters in the same situation. We refer to this approach as “poisoning” bad parameter

rollouts.

For this method, we need to define a distance function for (p, s) and (p′, s′),

a threshold, and assessment rules. The assessment rules are used to decide if a

planned parameter is bad or not, which is decided according to the effect of the

parameter. In our planning models, grasp pose planning has a large effect on the

pre-grasping motion and the grasping motion; so if these motions exit in failure,

the corresponding grasp pose parameters are assessed as bad. Similarly, pouring

location planning has a large effect on the pre-pouring motion, flow control, and

the post-pouring motion. Re-grasping planning has a large effect on the re-grasping

motion. Re-grasping is assumed to be executed once if necessary, so if the re-grasping

is executed twice, those re-grasping parameters are assessed as bad. In addition to

these automatic processes, a human operator can assess planned parameters as bad

by using manual input in our implementation.

The distance between (p, s) and (p′, s′) is defined for each planner individually. A

common way to compute a distance is as follows: computing the L-2 norms of p−p′

and the differences of individual elements in s and s′ (let’s say, s1− s′1, s2− s′2, . . .).

Then, we multiply a constant value for each norm for adjustment, and choose the

maximum norm as the distance. The elements of a situation are the positions of

the source and receiving containers (sps, spr), the orientations of the source and

receiving containers (sos, sor), initial joint positions (sq), and target position and

orientation (sptrg, sotrg). The distance definitions of grasp pose, pouring location,

May 15, 2015 22:11 WSPC/INSTRUCTION FILE ijhr2015a-f

Pouring Skills with Planning and Learning Modeled from Human Demonstrations 21

path, and re-grasping planning are respectively:

dgrasp = max(∥p− p′∥, ∥sps − s′ps∥, 0.2∥sos − s′os∥, ∥spr − s′pr∥, 0.2∥sor − s′or∥),
(1)

dpour = max(∥p− p′∥, ∥sps − s′ps∥, 0.2∥sos − s′os∥, ∥spr − s′pr∥, 0.2∥sor − s′or∥), (2)

dpath = max(∥p− p′∥, ∥sptrg − s′ptrg∥, ∥sotrg − s′otrg∥, ∥sq − s′q∥∞), (3)

dregrasp = max(10∥pxy − p′xy∥, |pθ − p′θ|, ∥sps − s′ps∥, 0.2∥sos − s′os∥). (4)

We are using the maximum norm between joint position vectors. In the distance of

re-grasping planning, since the x and y displacement pxy should be more sensitive

than the angle displacement pθ, they are separated and have different weights.

This distance measure computes a very situation-specific value. We can not

expect wide generalization of the modification. The reason we chose this approach

is that we already have an evaluation function for each planning method, so the

improvement from actual practice is not that much. Therefore, instead of using

a distance function with a wider generalization ability, that has a possibility of

undesired generalization, we chose a situation-specific one.

8. Experiments

We implement the pouring skills modeled in the previous sections on a robot, and

investigate their capabilities. We use a PR2 robot that has two 7-degrees of free-

dom arms with grippers. We use ROS packagesc for the PR2 to implement low-level

control, collision detection, and inverse kinematics solver of the grippers. The ac-

companying video is available at http://youtu.be/GjwfbOur3CQ.

8.1. Flow Control

First, we show the generalization ability of flow control with tipping in terms of

target amounts. Second, we compare shaking A and B skills. Third, we investigate

the tapping skill. Fourth, we show how learning from practice works. Finally, we

demonstrate the generalization ability of the general flow control model in terms of

source container shapes and material types. Fig. 9(a) shows the setup of the robot

and containers.

In order to measure the amount of poured material, we use an RGB camera and

detect specific colors as shown in Fig. 9(b). The ratio of colored areas is used as the

amount. For this purpose, as the receiving container, we use a transparent plastic

container whose back half is colored.

We prepare 14 containers and 5 materials as shown in Fig. 10. Though we use

only dry materials to avoid hardware damage by liquids, they behave similarly to

various types of liquids.

In the following experiments, we focus on flow control; the robot starts to pour

when the robot is grasping a source container and holding it near the receiver.

chttp://ros.org/

http://youtu.be/GjwfbOur3CQ
http://ros.org/

May 15, 2015 22:11 WSPC/INSTRUCTION FILE ijhr2015a-f

22 Akihiko Yamaguchi, Christopher G. Atkeson, and Tsukasa Ogasawara

Fig. 9. Setup of the experiments.

Fig. 10. Source containers and poured materials. Each photo contains a coin of diameter 0.955
inches as a scale. BBs are copper-coated bullets for toy guns. The container B3 and B4 are specially
designed for the experiments; these holes are designed to be small in order to produce jamming.

8.1.1. Tipping

Fig. 11 shows a typical result of pouring where the target amount is 0.5, the

source container is B1, and the poured material is the dried peas. The flow started

around 2 [s], and the robot slows down. Compared to the human demonstration

May 15, 2015 22:11 WSPC/INSTRUCTION FILE ijhr2015a-f

Pouring Skills with Planning and Learning Modeled from Human Demonstrations 23

Fig. 11. Typical result of pouring. The setup corresponds to that of the human demonstration
(Fig. 3); the source container is B1, and the poured material is the dried peas. For the consistency

with Fig. 3, θ (Theta) is shifted so that their ranges match with each other.

(Fig. 3), the robot behavior has a similar structure; namely, there are three phases.

However, we can find some differences. For example, the human slows down the

angular velocity before the flow starts. One possible reason is that the human tries

to keep the initial flow small. Estimating the orientation where the flow starts is

necessary to reproduce this behavior; humans are using visual information and/or

force information. We have not yet implemented this behavior.

Next, we investigate the generalization ability of the pouring skill in terms of

target amounts. We use B1 as the source container, the dry peas and the rice as

the poured material, and change the target amount from 0.1 to 0.6. Fig. 12(a) and

12(b) show the results of using the peas and the rice respectively. In Fig. 12(a), the

case of the largest error is at the target of 0.1. The reason is that the amount of

initial flow (around 3 [s]) was large; the initial flow poured more than the target

amount. In the other cases, the target amount is achieved more closely.

On the other hand, the results of the rice case (Fig. 12(b)) seem to be noisy. Each

amount trajectory overshoots. This was caused by the vision system being confused

by the stream of material during the pouring. Compared to the peas, the flow of

rice spread more widely and was more visible to the camera. There are several ways

to reduce this problem: using a better vision system, adjusting pouring parameters,

using force information 11, or using other sensors. We will improve our sensing in

future work. However, in both cases the pouring skill has some generalization ability

in terms of target amounts.

8.1.2. Comparison of Shaking Skills

We investigate two versions of the shaking skills, shaking A and B, and make clear

the necessity of both versions. We use B4 and B3 as the source containers. The

poured material is the dried peas. For each container, we apply shaking A and

May 15, 2015 22:11 WSPC/INSTRUCTION FILE ijhr2015a-f

24 Akihiko Yamaguchi, Christopher G. Atkeson, and Tsukasa Ogasawara

(a) Dry peas.

(b) Rice.

Fig. 12. Generalization in terms of target amounts.

shaking B with axes ϕ = 0 and ϕ = π/4.

Table 2 shows the results of the B4 and the B3 cases. The table describes the

number of failures out of 3 runs, and average pouring duration. The failure is a

timeout case; tmax is about 40 [s] in the B4 case, and is about 80 [s] in the B3

case, since the latter case is more difficult. Obviously, in the B4 case, shaking A

outperforms the others; meanwhile in the B3 case, shaking B with ϕ = π/4 is the

best. Both shaking versions are necessary to cover a wide range of source containers.

Fig. 13(a) shows a result of shaking A for the B4 container. Fig. 13(b) shows a

May 15, 2015 22:11 WSPC/INSTRUCTION FILE ijhr2015a-f

Pouring Skills with Planning and Learning Modeled from Human Demonstrations 25

Table 2. Comparison of shaking A and shaking B.

Src. Method # of failures Avg. duration [s]

B4

{ Shaking A 0 19.06
Shaking B(0) 2 45.76
Shaking B(π/4) 0 31.03

B3

{ Shaking A 2 94.29

Shaking B(0) 3 N/A
Shaking B(π/4) 0 38.87

result of shaking B with ϕ = π/4 for the B3 container. In Fig. 13(a), we can see

a little flow before starting shaking (around 5 [s]) but the flow stops due to the

jammed material, so tipping does not work any more. During shaking, we can see

the amount is increasing. Thus, shaking is a possible way for the robot to solve

jamming. Compared to the B4 case, it takes more time to pour the target amount

in the B3 case. The B3 container is also difficult for humans to pour.

8.1.3. Tapping

Next, we investigate the performance of tapping. This skill uses the right gripper

to tap, so we start from the setup shown in Fig. 9(c). The robot grasps a source

container with the left gripper while the right gripper stays above the receiving

container. In order to touch the right gripper to the source container, we define a

tapping pose as a constant vector in the source container frame. We use the B25

container and the BBs.

Fig. 14 shows the result of tapping where the result of B25-peas in the previous

tipping experiment is shown as the comparison. We can see that using tapping,

the robot can pour the material very slowly. Thus, tapping enables the robot to

pour accurately. However, there is another difficulty; in the slow pouring setup,

the amount of initial flow is comparably large, which dominates the total amount.

Thus, without an accurate controller for the initial flow, we cannot achieve accurate

pouring with respect to the total amount.

8.1.4. Direct Policy Learning in Flow Control

We demonstrate how the parameter optimization architecture works. Here, we in-

vestigate separately discrete parameter optimization (skill selection) and continuous

parameter optimization.

Skill Selection Optimization In this experiment there are three choices: tipping,

shaking A, and shaking B. The axis of shaking B is fixed to ϕ = π/4. We initialize

the expected scores of the three options as 1.0, 0.5, 0.5 respectively, which means

that the robot will use tipping initially.

Fig. 15(a) shows the result of the B3 case, and Fig. 15(b) shows the result of the

May 15, 2015 22:11 WSPC/INSTRUCTION FILE ijhr2015a-f

26 Akihiko Yamaguchi, Christopher G. Atkeson, and Tsukasa Ogasawara

(a) Shaking A. The source container is B4.

(b) Shaking B(π/4). The source container is B3.

Fig. 13. Results of shaking A and B. The material is the dried peas. While the orientation θ takes
a constant value, the shaking motion is performed.

B4 case. The dried peas are used in both cases. Several trials are sequentially done

in each case; six trials in the B3 case, and seven trials in the B4 case. In each graph,

the selected option is plotted on the amount trajectory.

In the first trial of Fig. 15(a), we can see the three options were tried. First,

the robot applied tipping, but since it did not work, the robot switched to shaking

A (recall that this is an on-line parameter optimization). In the first and second

trials, shaking A seems to have been dominant. However, shaking A got stuck due

to jamming in the 4-th trial. Eventually, shaking B was selected.

In the first trial of Fig. 15(b), only tipping was used though the selection was

done several times. As we could see a little flow before starting shaking in Fig. 13(a),

tipping works in this setup initially. Actually in the first trial, alternately tipping

and going back to the initial position achieved the target amount. Thus, it took

several times to learn that the performance of tipping was not good. In the second

May 15, 2015 22:11 WSPC/INSTRUCTION FILE ijhr2015a-f

Pouring Skills with Planning and Learning Modeled from Human Demonstrations 27

Fig. 14. Comparison of tipping and tapping.

and the third trials, the robot used shaking B and A respectively. Since the robot

could pour continuously with each skill, it did not change the skill in each trial. In

5-th and 6-th trials, the robot experienced jamming with the shaking B. Eventually,

the robot decided to use the shaking A for this situation.

Therefore, in both the B3 and B4 cases, we obtain the corresponding results

with the previous experiment.

Continuous Parameter Optimization Next, we optimize the parameter ϕ to

decide the axis of shaking B. The initial mean and standard deviation are ϕ = π/4

and 1 respectively. In the early stage of optimization, the robot will choose the

parameter almost randomly with this configuration. ϕ is limited in [0, ϕ/2].

We ran 11 trials sequentially. Fig. 16(a) shows the scores in each generation.

Fig. 16(b) shows the parameters in each generation of the CMA-ES; there are 4

individuals (different parameters) in each generation. We can see that the parameter

converges to around 0.6 in Fig. 16(b), and the score is improved in Fig. 16(a). The

pouring duration was improved from 60.71 [s] of the first trial to 42.47 [s] of the

last trial. In the previous experiment, we compared ϕ = 0 and ϕ = π/4 in the same

setup, and found that ϕ = π/4 is better. In this experiment, the robot could find

an optimal parameter automatically, and the resulting parameter is close to the

manual optimization result, ϕ = π/4. Thus, the CMA-ES could find an appropriate

solution.

On the other hand, the score function was very noisy. Even taking the same

parameter, the resulting scores are different. The shaking result is affected by the

previous shaking motion. Due to these effects, in Fig. 16(b), the parameter seems to

have almost converged around 30 [s], but the score of the corresponding generation

May 15, 2015 22:11 WSPC/INSTRUCTION FILE ijhr2015a-f

28 Akihiko Yamaguchi, Christopher G. Atkeson, and Tsukasa Ogasawara

(a) Container B3.

(b) Container B4.

Fig. 15. Learning process of skill selection optimization.

was not so high. After that, it increased the search deviation and found a parameter

with a better score. Thus, CMA-ES is practically useful.

8.1.5. Generalization of the Flow Controller

We investigate the generalization ability in terms of source container shapes and

material types. Each situation is described as a SOURCE-MATERIAL format; e.g.

B1-BBS. We prepared 15 combinations from the containers and the materials shown

in Fig. 10. For some of them, we manually assigned the parameters of the skill

selection and the shaking axis. We assigned incorrect parameters for a B3-rice case

where we used the same parameters as those of B3-peas treated in the previous

experiments. We assume the parameters of the other cases are unknown. For these

May 15, 2015 22:11 WSPC/INSTRUCTION FILE ijhr2015a-f

Pouring Skills with Planning and Learning Modeled from Human Demonstrations 29

(a) Scores per generation (larger is better). A moving average filter is applied,
and the data of the first 20 generations is omitted because of inadequate data
for the filter.

(b) Chosen parameters (ϕ) per generation.

Fig. 16. Learning process of parameter ϕ optimization in shaking B.

cases, we initialized the parameters as was done in the parameter optimization

experiments. The target amount is 0.3 except for a B41-rice case; in the B41-rice

case, the target amount is 0.1 since B41 is a small container.

Fig. 17 shows the results where the combinations are categorized into long pour-

ing duration ones (Fig. 17(c)) and short duration ones (Fig. 17(a) and Fig. 17(b)). In

the B8-rice, the B40-rice, and the B41-rice cases, the overshoot problem happened

similarly to the previous experiment. In the B7-pasta case, the poured amount

exceeds the target significantly. This is because the friction between the source con-

tainer and the material is pretty low in this combination. In the B6-BBs case, the

poured amount also exceeds the target. The reason is that since the hole of the

May 15, 2015 22:11 WSPC/INSTRUCTION FILE ijhr2015a-f

30 Akihiko Yamaguchi, Christopher G. Atkeson, and Tsukasa Ogasawara

(a) Short pouring duration (1).

(b) Short pouring duration (2).

(c) Long pouring duration.

Fig. 17. Results of generalization test in terms of source container shapes and material types.
Each curve shows a result of SOURCE-MATERIAL combination. (K) indicates the parameters
are known, (U) indicates the parameters are unknown, and (I) indicates the original parameters
are incorrect.

May 15, 2015 22:11 WSPC/INSTRUCTION FILE ijhr2015a-f

Pouring Skills with Planning and Learning Modeled from Human Demonstrations 31

Fig. 18. Containers and their models. Each model has a graspable cylinder, a polygon of the mouth,
and the bounding box. The mouths of the containers B54, B56, and B58 are not located at the

center.

container B6 is small, the robot rotated the container more than the others, which

increased the material flow during moving the container back to the initial orienta-

tion. For the other cases in the short pouring duration category, the target amount

was almost achieved.

In the long pouring duration cases in Fig. 17(c), the known cases, B3-peas and

B4-peas, were poured relatively quickly. Though incorrect parameters were given,

the B3-rice case was also poured quickly. This is because the problem setup was

similar; the difference was the dried peas and the rice only. The B5-clips and the

B9-pasta cases took longer. These problems were difficult since the particle was

large compared to the containers’ holes. Since these were unknown setups, the skill

selection was optimized during the execution (we executed only one trial).

Though there is room for improvement, we have achieved some generalization.

8.2. Planning and Learning in the Entire Pouring Process

Next, we discuss the simulation experiments to investigate whether the state ma-

chines and the planning methods work as expected. Then we discuss the robot

experiments.

Fig. 18 shows the containers and their models used in the experiments. The con-

tainer models were measured manually. The measured parameters were the Carte-

sian coordinates of the end points of the graspable cylinder and its width, and

the points of the polygon of the mouth which is assumed to be a circle or ellipse

segment. These are defined in the container’s local frame. The bounding box of a

container is automatically computed. Fig. 18 also shows the materials used in the

experiments.

May 15, 2015 22:11 WSPC/INSTRUCTION FILE ijhr2015a-f

32 Akihiko Yamaguchi, Christopher G. Atkeson, and Tsukasa Ogasawara

Fig. 19. Failure cases of pouring in simulation. The left is the failure in the pre-grasping motion
where the robot needs to move the left gripper to the grasp pose. The right is the failure in the
re-grasping where the robot needs to put the grasping container at the new pose. The source

containers are B54 and B58 respectively; like a coke can, both have mouth holes whose locations
are not the center, so the planned grasp poses seem to be cramped.

8.2.1. Simulation

We use the Gazebo simulatord to simulate the robot motions. Here, we apply the

dynamics simulation only for robot control. We treat the other objects, i.e. a table

and containers, as virtual objects. Thus, we can compute the collisions among these

objects and the robot, but the collisions do not have a physical effect.

We put a table in front of the robot, and put a receiving container and a source

container at random poses on the table. We use ten types of source containers, and

execute the pouring state machine 10 times for each source container.

Table 3 shows the simulation results. The average duration of staying in each

state, the number of executions, and the number of failures are shown. We did not

simulate flow control, so its results are not available. Our pouring model seems to

be working correctly at this level, but there were several failures. The reason for

failures in the grasp pose planning was that the initial pose of a source container

was infeasible, so the robot could not find a solution.

The other failures in the pre-grasping motion, the pre-pouring motion, the post-

grasping motion, and the re-grasping were failures of path planning; the conditions

were too difficult to plan the path. Using a different planner that has more capability

will provide a solution to these conditions, but we think the problem is the planning

of the other parameters. Fig. 19 shows the conditions of some failure cases. In both

cases, it seems to be better to improve the grasp pose planning.

Our learning mechanism mentioned in Section 7.4 solves this problem; the robot

can memorize this situation and the parameters as a bad example, which changes

dhttp://gazebosim.org/

http://gazebosim.org/

May 15, 2015 22:11 WSPC/INSTRUCTION FILE ijhr2015a-f

Pouring Skills with Planning and Learning Modeled from Human Demonstrations 33

Table 3. Simulation results.

State Avr. duration # of executions (failures)

Grasping pose planning 9.13 146 (4)
Pre-grasping motion 13.43 142 (1)
Grasping motion 1.78 141 (0)
Pouring location planning 4.47 141 (0)

Pre-pouring motion 27.47 94 (1)
Flow control N/A 93 (0)
Post-pouring motion 14.27 93 (0)
Releasing motion 1.11 93 (0)

Post-grasping 12.04 93 (1)
Re-grasping 81.19 47 (1)
Total 134.22 100 (8)

Fig. 20. Planning result of spreading pattern (in simulation).

the planning. In the failed re-grasping case, the human operator taught the robot

that the planned grasp pose was bad, since the robot cannot distinguish which of the

grasp pose planning and the re-grasping planning was bad. After teaching several

bad examples, the robot could succeed to pour in these setups.

Next, we investigate the spreading model in simulation. Since the difference

between pouring and spreading is the movement of the source container’s mouth, we

show the planning result of spreading patterns. Fig. 20 shows examples of planned

spreading patterns. The robot could plan spreading patterns for each receiver’s

shape.

8.2.2. Robot Experiments

We investigate our pouring and spreading models with a PR2 robot. Here, we

conduct the experiments involving the whole procedure.

Fig. 21 shows the setup of the experiments. We use an external RGB camera to

May 15, 2015 22:11 WSPC/INSTRUCTION FILE ijhr2015a-f

34 Akihiko Yamaguchi, Christopher G. Atkeson, and Tsukasa Ogasawara

Fig. 21. Setup of the robot experiments.

measure the material amount and an external RGB-D sensor, Xtion Pro Live, to

measure the relative poses of containers from the robot.

As in the previous experiments, we use the color information from the RGB

camera to estimate the amount of the materials poured into the receiving container.

In addition to this, we also measure the flow speed for the spreading control to

decide the speed of moving the source container’s mouth. We apply an optical flow

detection algorithm, the Lucas-Kanade method 23 implemented in OpenCVe, to the

material flow; the measured value of the optical flow has a different scale from the

amount measurement, so we apply a simple scaling to the optical flow.

Before each experiment, we put two AR-markers on the table and measure their

poses using a ROS packagef , then put a source and a receiving containers on them.

Another marker is attached on the robot’s left gripper, which is used to calibrate the

sensor position in the robot’s frame. Since the transformation between the sensor

and the robot is not constantg, that calibration is applied in every time step with

a small update ratio. Especially in the pre-grasping motion, the robot stops in

front of the source container to wait until the calibration error becomes less than a

threshold, then moves for grasping.

We conducted the experiments using B53-peas, B54-BBs, B55-peas, B56-peas,

B57-rice, B58-peas, B59-rice, B60-BBs, B61-rice, and B62-peas as source contain-

ers and materials. For each setup, we tested two types of initial poses; the source

container is left or right. We did not use fixed poses, but each pose was moved a

little bit manually.

Fig. 22 shows the snapshots of pouring using the B53 source container. We can

see that the whole procedure was completed. During flow control, we can see not only

ehttp://opencv.org/
fhttp://wiki.ros.org/ar_track_alvar
gA possible reason is the lens distortion of the sensor.

http://opencv.org/
http://wiki.ros.org/ar_track_alvar

May 15, 2015 22:11 WSPC/INSTRUCTION FILE ijhr2015a-f

Pouring Skills with Planning and Learning Modeled from Human Demonstrations 35

Fig. 22. Snapshots of pouring peas from the B53 source container. Snapshots are put with the
corresponding state transitions. In states where the planning is executed, the model view is shown.
The snapshots of the RGB camera are also shown in flow control, where the white part indicates
the detected colors of the receiving container, and the vertical small lines show the flow.

Table 4. Results of real robot experiments.

State Avr. duration # of executions (failures)

Grasp pose planning 12.31 21 (2)

Pre-grasping motion 19.09 19 (3)
Grasping motion 1.68 16 (0)
Pouring location planning 3.06 16 (0)

Pre-pouring motion 17.83 15 (1)
Flow control 77.82 14 (0)
Post-pouring motion 15.70 14 (0)
Releasing motion 0.58 14 (0)

Post-grasping 10.46 14 (0)
Re-grasping 37.56 1 (0)
Total 133.07 20 (6)

tipping the container, but also moving the height of the pouring location (mouth

of the container), which was controlled by the parallel state machine.

Table 4 shows the results where the average duration of staying in each state,

the number of executions, and the number of failures are shown. In terms of the

average duration, there are not big differences from the simulation results shown in

Table 3. There were six failures in total, which can be categorized into three types:

(1) Pose estimation error of the RGB-D sensor and the AR marker. Especially

in the B56-left and B60-right cases, the calibration mentioned above failed during

the pre-grasping motion. In these cases, the robot could not move the gripper to

the planned grasp pose. In B57-left, the initial pose estimation with the marker of

May 15, 2015 22:11 WSPC/INSTRUCTION FILE ijhr2015a-f

36 Akihiko Yamaguchi, Christopher G. Atkeson, and Tsukasa Ogasawara

the source container was inaccurate, which caused the failure in planning the grasp

pose in B57-left.

(2) Collision model error. In the B62-right case, this caused the failure of the

grasp pose planning.

(3) Planning problem. In B56-right and B58-right cases, the pre-grasp pose xg0

obtained in the grasp planning was detected as IK-unsolvable in the succeeding

path planner. The grasp planner considers the IK-solvability of xg0, so we did not

see this problem in the simulation experiments. However, if the optimizer returns

a solution near the boundary of IK solvable and unsolvable, that solution would be

affected by sensor noise. We believe this happened in the B56-right and B58-right

cases.

The problem (3) can be solved by using our learning scheme. When the pre-

grasping motion fails because of the path planning failure, the previous grasping

planning is assessed as bad. The robot will avoid the same solution to the same

situation. We investigated this by using the B56-right case. We prepared the same

setup as that case, then executed pouring several times. In the second time, the

robot output a feasible pre-grasping pose.

We conclude that our pouring behavior can generalize in terms of container

shapes, material types, and initial poses of the containers.

Next, we conduct experiments to see how the spreading model works. We use

the B53 container as a source container, and the B100 container and a round plate

as receivers. Fig. 23 shows the spreading control for each container case. The other

procedures are performed as those of pouring. We can see that for different shapes,

the spreading patterns are fitted. However, the density of each area is not constant;

when spreading tomato sauce on pizza bread, we expect that the density will be

constant. In order to solve this issue, we need to improve the accuracy of flow speed

control and the control of following the desired spreading pattern.

9. Conclusion

We created a behavior for a general pouring task with several variations: targets,

material types, container shapes, initial poses of containers, and target amounts.

A major challenge to achieve these variations was flow control since modeling the

dynamics of material flow is difficult. We solved this problem by using a skill library

where different behaviors for flow control, such as tipping, shaking, and tapping,

were stored. Selecting an appropriate behavior for each situation was realized by

learning. Planning methods were introduced that handled the variations in tar-

gets, container shapes, and initial container poses. In order to increase the planning

performance, learning-from-practice methods were also introduced, where the eval-

uation functions for planning were updated using samples obtained through execu-

tion. The simulation and robot experiments using a PR2 robot demonstrated that

our pouring behavior could generalize across a variety of pouring variations. This

work provides guidance for developing better algorithms and theories about how to

May 15, 2015 22:11 WSPC/INSTRUCTION FILE ijhr2015a-f

Pouring Skills with Planning and Learning Modeled from Human Demonstrations 37

(a) B100.

(b) Circle plate.

Fig. 23. Snapshots of spreading.

perform complex tasks with many variations that go beyond manipulation of rigid

objects.

Acknowledgements

We would like to appreciate Dr. Scott Niekum in Carnegie Mellon University who

assisted our learning-from-demonstration research. We are also thankful to Professor

Maxim Likhachev’s Search-based Planning Lab in Carnegie Mellon University for

making their PR2 robot available for experiments. A. Yamaguchi was funded in

part by Japan Society for the Promotion of Science under the Strategic Young

Researcher Overseas Visits Program for Accelerating Brain Circulation G2503.

May 15, 2015 22:11 WSPC/INSTRUCTION FILE ijhr2015a-f

38 Akihiko Yamaguchi, Christopher G. Atkeson, and Tsukasa Ogasawara

References

1. P. Kormushev, S. Calinon, and D. G. Caldwell, “Robot motor skill coordination with
EM-based reinforcement learning,” in the IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS’10), 2010, pp. 3232–3237.

2. J. Maitin-Shepard, M. Cusumano-Towner, J. Lei, and P. Abbeel, “Cloth grasp point
detection based on multiple-view geometric cues with application to robotic towel fold-
ing,” in the IEEE International Conference on Robotics and Automation (ICRA’10),
2010, pp. 2308–2315.

3. M. Bollini, S. Tellex, T. Thompson, N. Roy, and D. Rus, “Interpreting and executing
recipes with a cooking robot,” in the 13th International Symposium on Experimental
Robotics, 2013, pp. 481–495.

4. M. Phillips, B. Cohen, S. Chitta, and M. Likhachev, “E-graphs: Bootstrapping plan-
ning with experience graphs,” in Robotics: Science and Systems (RSS’12), 2012.

5. A. Billard and D. Grollman, “Robot learning by demonstration,” Scholarpedia, vol. 8,
no. 12, p. 3824, 2013.

6. M. Mühlig, M. Gienger, S. Hellbach, J. J. Steil, and C. Goerick, “Task-level imitation
learning using variance-based movement optimization,” in the IEEE International
Conference on Robotics and Automation (ICRA’09), 2009, pp. 1177–1184.

7. P. Pastor, H. Hoffmann, T. Asfour, and S. Schaal, “Learning and generalization of
motor skills by learning from demonstration,” in the IEEE International Conference
on Robotics and Automation (ICRA’09), 2009, pp. 763–768.

8. M. Tamosiunaite, B. Nemec, A. Ude, and F. Wörgötter, “Learning to pour with a
robot arm combining goal and shape learning for dynamic movement primitives,”
Robotics and Autonomous Systems, vol. 59, no. 11, pp. 910–922, 2011.

9. K. Kronander and A. Billard, “Online learning of varying stiffness through physi-
cal human-robot interaction,” in the IEEE International Conference on Robotics and
Automation (ICRA’12), 2012, pp. 1842–1849.

10. O. Kroemer, E. Ugur, E. Oztop, and J. Peters, “A kernel-based approach to direct
action perception,” in the IEEE International Conference on Robotics and Automation
(ICRA’12), 2012, pp. 2605–2610.

11. L. Rozo, P. Jiménez, and C. Torras, “Force-based robot learning of pouring skills
using parametric hidden Markov models,” in the IEEE-RAS International Workshop
on Robot Motion and Control (RoMoCo), 2013.

12. S. Brandi, O. Kroemer, and J. Peters, “Generalizing pouring actions between ob-
jects using warped parameters,” in the 14th IEEE-RAS International Conference on
Humanoid Robots (Humanoids’14), Madrid, 2014, pp. 616–621.

13. D. C. Bentivegna, “Learning from observation using primitives,” Ph.D. dissertation,
Georgia Institute of Technology, 2004.

14. B. da Silva, G. Konidaris, and A. Barto, “Learning parameterized skills,” in the 29th
International Conference on Machine Learning (ICML’12), 2012.

15. L. P. Kaelbling and T. Lozano-Pérez, “Integrated task and motion planning in belief
space,” The International Journal of Robotics Research, vol. 32, no. 9-10, pp. 1194–
1227, 2013.

16. M. Zucker and J. A. Bagnell, “Reinforcement planning: RL for optimal planners,”
in the IEEE International Conference on Robotics and Automation (ICRA’12), 2012,
pp. 1050–4729.

17. J. Kober, A. Wilhelm, E. Oztop, and J. Peters, “Reinforcement learning to adjust
parametrized motor primitives to new situations,” Autonomous Robots, vol. 33, pp.
361–379, 2012, 10.1007/s10514-012-9290-3.

18. N. Hansen, “The CMA evolution strategy: a comparing review,” in Towards a new

May 15, 2015 22:11 WSPC/INSTRUCTION FILE ijhr2015a-f

Pouring Skills with Planning and Learning Modeled from Human Demonstrations 39

evolutionary computation, J. Lozano, P. Larrañaga, I. Inza, and E. Bengoetxea, Eds.
Springer, 2006, vol. 192, pp. 75–102.

19. R. Sutton and A. Barto, Reinforcement Learning: An Introduction. Cambridge, MA:
MIT Press, 1998.

20. O. Kroemer, R. Detry, J. Piater, and J. Peters, “Combining active learning and re-
active control for robot grasping,” Robotics and Autonomous Systems, vol. 58, no. 9,
pp. 1105–1116, 2010.

21. A. Yamaguchi, J. Takamatsu, and T. Ogasawara, “Learning strategy fusion to ac-
quire dynamic motion,” in the 11th IEEE-RAS International Conference on Humanoid
Robots (Humanoids’11), Bled, Slovenia, 2011, pp. 247–254.

22. S. M. LaValle, “Rapidly-exploring random trees: A new tool for path planning,” Com-
puter Science Dept., Iowa State University, Tech. Rep. TR 98-11, 1998.

23. B. D. Lucas and T. Kanade, “An iterative image registration technique with an ap-
plication to stereo vision,” in the 7th international joint conference on Artificial in-
telligence (IJCAI’81), 1981, pp. 674–679.

May 15, 2015 22:11 WSPC/INSTRUCTION FILE ijhr2015a-f

40 Akihiko Yamaguchi, Christopher G. Atkeson, and Tsukasa Ogasawara

Akihiko Yamaguchi received the BE degree from the Kyoto

University, Kyoto, Japan, in 2006, and the ME and the PhD de-

grees from Nara Institute of Science and Technology (NAIST),

Nara, Japan, in 2008 and 2011, respectively. From April 2010

to July in 2011, he was with NAIST as a JSPS, Japan Soci-

ety for the Promotion of Science, Research Fellow. From Au-

gust 2011 to March 2015, he was with NAIST as an Assistant

Professor of the Robotics Laboratory in the Graduate School of Information Sci-

ence. From April 2014 to March 2015, he was a visiting scholar of Robotics Institute

in Carnegie Mellon University, and from April 2015 to present, he is a postdoctoral

fellow of the same institute. His research interests include motion learning of robots,

reinforcement learning application to robots, machine learning, and artificial intel-

ligence.

Christopher G. Atkeson is a Professor in the Robotics In-

stitute and Human-Computer Interaction Institute at Carnegie

Mellon University. He received the M.S. degree in Ap-

plied Mathematics (Computer Science) from Harvard Uni-

versity and the Ph.D. degree in Brain and Cognitive Sci-

ence from M.I.T. He joined the M.I.T. faculty in 1986,

moved to the Georgia Institute of Technology College

of Computing in 1994, and moved to CMU in 2000.

Tsukasa Ogasawara received the BE, ME and PhD degrees

from the University of Tokyo, Tokyo, Japan, in 1978, 1980

and 1983, respectively. From 1983 to 1998, he was with the

Electorotechnical Laboratory, Ministry of International Trade

and Industry, Ibaraki, Japan. From 1993 to 1994, he was with

the Institute for Real-Time Computer Systems and Robotics,

University of Karlsruhe, Karlsruhe, Germany, as a Humboldt

Research Fellow. In 1998, he joined Nara Institute of Science and Technology, Nara,

Japan, as a Professor of the Robotics Laboratory in the Graduate School of Informa-

tion Science. He is a dean of the Graduate School of Information Science since 2013.

His research interests include human-robot interaction, dexterous manipulation and

biologically inspired robotics.

	Introduction
	Overview of the Pouring Model
	Pouring Variations
	Assumptions
	Overview of the Pouring Behavior Model

	Related Works
	Pouring Robots
	Planning and Learning Methods

	Discussions of Human Pouring
	Flow Control
	Pouring Variations

	Modeling Pouring
	Finite State Machines
	Flow Control Skills
	Tipping
	Shaking
	Tapping
	General Flow Control

	Modeling the Complete Pouring Behavior
	Spreading Model

	Direct Policy Learning
	Problem Specification
	Optimization Methods
	Architecture

	Unified Planning and Learning
	Assumptions
	Planning using Optimization
	Grasp Pose Planning
	Pouring Location Planning
	Path Planning
	Re-grasping Planning

	Other Planning Schemes
	Adding Learning to Planning

	Experiments
	Flow Control
	Tipping
	Comparison of Shaking Skills
	Tapping
	Direct Policy Learning in Flow Control
	Generalization of the Flow Controller

	Planning and Learning in the Entire Pouring Process
	Simulation
	Robot Experiments

	Conclusion

