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1. Introduction

Many robots are designed for use in domestic en-

vironments where robots will be engaged in house-

hold chores. The robots need to learn ways to do the

household chores that humans are now doing. We are

taking a learning from demonstration (LfD) approach

to this problem [1]. In terms of the household chores,

a number of tasks are developed so far; for example,

bringing a beer bottle from a refrigerator to a human,

making pancakes [2], and folding towels [3].

However, a key issue for robots to do household

chores is how to treat different versions of each task.

Consider an opening task. There are a number of ways

to open a container: rotating a cap on a plastic bottle,

pulling a hinge cap of a ketchup bottle, pulling a pop-

tab of a beer can, tearing a bag of potato chips, and

so on. In addition, when opening a tight jar, we will

use a different way to open it, like holding a cap with

a wet towel. We call these methods skills. Learning

these skills is essential for robots to fully handle tasks.

In this research, we treat a pouring task to study

skill learning; its purpose is to move material. Hu-

mans use many skills to pour, such as shaking a bottle

to pour viscous liquid like ketchup, tapping a bottle

to pour a little amount of coffee powder, squeezing

a shampoo bottle, and pushing a soap pump. Thus,

the pouring task is a good example for robots to learn

skills.

The goal of this research is making a general pour-

ing behavior model from human demonstrations with

which the robot can pour a wide variety of materials

from a wide variety of containers. This problem is

decomposed into three sub-problems:

(1) Deriving a model of a skill from human demon-

strations in order to reproduce the skill. Each

model will have some adjustable parameters to

adapt to a specific situation like bottle size and

material kind.

(2) Storing skill models and pairs of a situation de-

scription and the parameters for the situation.

Then, selecting a skill for a new situation with

estimated parameters.

(3) Correcting the selection of a skill if necessary,

and adjusting the parameters to the new situation

through actual executions.

An important first step to solving these sub-

Fig. 1: Setup to measure a human demonstration.

problems is finding important features that strongly

affect each performance. For example in pouring, con-

trolling the mouth edge of a bottle is better than con-

trolling the gripper pose, as we discuss in Section 2.

Another feature is an estimation of a flow trajectory.

Though a number of methods are proposed so far in

LfD research, we do not see a practical solution. The

issue is that we have not formulated this kind of prob-

lem yet. Therefore, in this research, we model the

behaviors manually by observing human demonstra-

tions, then improve them through experiments. In

this paper, we report our modeling of pouring behav-

ior, a shaking skill, a tapping skill, and their imple-

mentation with the PR2 robot.

There are several attempts for robots to learn pour-

ing from human demonstrations [4, 5, 6]. However,

they are focusing on a single pouring behavior. As

far as we know, there is no method that has a capa-

bility to learn different versions of each task.

In Section 2, we model the behaviors from human

demonstrations. In Section 3, we implement the skills

in the PR2 robot. Section 4 concludes this paper.

2. Skill Modeling

In this section, we discuss suitable models of behav-

iors based on human demonstrations.

2.1 Human Demonstration of Pouring

First, we observe human demonstrations of pour-

ing. We use the setup shown in Fig. 1 to track the

human demonstrations. A human subject will pour

from the cup A to the cup B where the orientation



Fig. 2: Result of a human demonstration. The dot-
ted curve shows the flow amount, and the solid
curve shows the orientation (Theta) of the cup
A.

Fig. 3: Trajectories of markers on the cup A. Pour-
ing is done where the x position of the upper
marker is around -300.

of the cup A and the amount of material in the cup

B are measured by RGB cameras. The material in

the cup A is dried peas which behave like water, but

are more convenient for measuring the amount and

for real robot experiments. The human subject pours

the material to a target amount of 0.5 which is half

of the cup B.

Fig. 2 shows an obtained demonstration of pouring

where the flow amount and the orientation are plot-

ted. From this demonstration, we can see that there

are three phases in pouring. Phase 1: rotating the

cup A quickly until flow is observed. Phase 2: after

flow starts, the human rotates the cup slowly until the

amount reaches the target. We found that once the

flow starts, it continues without rotating the cup so

much, and thus the human was more careful. Phase 3:

after reaching the target amount, the human moves

the cup to the initial pose.

Fig. 3 shows the x and y trajectories of markers on

the cup A. We can see that during pouring, the upper

marker is moving little, on the other hand, the bot-

tom marker is moving widely. The grasping point is

around the middle of these markers, thus this point is

also moving more widely than the upper marker.

2.2 Modeling Pouring

Next, we discuss how to model the pouring behav-

ior for a robot. The whole pouring task consists of

grasping a cup, moving it to the other cup, pouring

the material from a cup to the other cup, moving the

cup to an initial location, and releasing the cup. For

simplicity, here we assume that the robot starts to

pour when the robot is grasping a cup and holding it

near from the other cup.

From the result of Fig. 3, we think that modeling

the movement of a point on the mouth edge of the

cup is easier than modeling the movement of the grip-

per trajectory. Thus, we assume that during pouring,

the cup edge point takes a constant value, and only

the orientation changes to control the flow. The cup

moves mostly in a 2-dimensional plane, so the orienta-

tion is modeled by a 1-dimensional variable, θ. When

the robot is grasping a cup, the position of the cup

edge point is constant in the local frame of the grip-

per. Thus, controlling the cup edge point is achieved

by a standard inverse kinematics solver.

As we mentioned above, we found three phases in

the human demonstration. A simple way to model

this kind of behavior is using a finite state machine.

When no flow is observed, the robot increases θ

(Phase 1). If flow is observed, the robot slows down

the movement (Phase 2). If the target amount is

achieved, the robot moves θ to the initial value (Phase

3).

Through some demonstrations, we found that if the

material starts flowing, it continues to flow without

increasing θ. Thus, in Phase 2, we increase θ only

when the flow is not observed, and keep the same

value when the flow is observed.

2.3 Shaking

Humans sometimes shake a bottle to pour when the

material is jamming inside the bottle or the material is

a viscous liquid. Though there are a variety of shaking

behaviors, we simply model the shaking behavior as a

vertical motion while holding the bottle upside down.

2.4 Tapping

Tapping is used to pour material accurately; for

example, pouring coffee powder. Reproducing such a

motion with a robot is a bit difficult unless the robot

can move the gripper rapidly. Our modeling is touch-

ing the free gripper to the cup held by the other grip-

per, then vibrating the gripper.

3. Experiments

We implement the pouring skills modeled in the

previous section on a robot, PR2. The PR2 has two



Fig. 4: Setup of the experiments.

Fig. 5: Object specific vectors. A pose means a xyz
position and a quaternion. [A] and [w] denote a
vector defined in the cup A and the wrist frames
respectively.

7-degrees of freedom arms with grippers. Fig. 4(a)

shows the setup of the robot and the cups. We use

dried peas to avoid hardware damage by liquid. In or-

der to measure the amount of poured material, we use

an RGB camera and detect specific colors as shown

in Fig. 4(b). The ratio of colored areas is used as the

amount.

We use ROS packages for the PR2 to implement

low-level control and inverse kinematics solver of the

grippers. As mentioned in Section 2.2, in order to

control the pose of the pouring edge point with the

1-dimensional variable θ, we define several object spe-

cific vectors as illustrated in Fig. 5. The pouring edge

pose [A] and the grasping pose [A] are constant vec-

tors in the cup A frame; these are defined for each cup

and bottle from which the robot pours the material.

Since during grasping, the gripper pose corresponds to

the grasping pose, we can compute the pouring edge

pose in the wrist frame. An inverse kinematics solver

for the wrist link is implemented in a ROS package,

thus we can control the pouring edge pose. From the

initial pose of the cup A, we can estimate the rotation

axis.

Fig. 6 shows the result of pouring where the target

amount is 0.5. In this graph, only Phase 1 and 2 are

Fig. 6: Result of pouring.

Fig. 7: Result of the shaking.

plotted; after achieving the target amount, the robot

moves θ to the initial value. The flow started around

2 [s], then the robot slows down to move θ. Compar-

ing to the human demonstration (Fig. 2), the robot

behavior has similar structure. However, there are

some small differences. For example, the human slows

down the angular velocity before the flow starts. One

possible reason is that the human tries to keep the

initial flow small. Estimating the orientation where

the flow starts is necessary to reproduce this behav-

ior; humans are using visual information and/or force

information. We are ignoring this behavior, but it

seems to be working practically.

Shaking is useful when the material is jamming,

so we use a bottle with a small hole as shown in

Fig. 4(c). The peas are contained in the bottle. The

robot grasps the white part, and the initial pose is

similar to the standard pouring case. Fig. 7 shows

the result of pouring with shaking. The orientation θ

is plotted only while the robot rotates the bottle to

turn it upside down. After this phase, the shaking

motion starts. We can see a little flow during this

phase (around 6 [s]), but the flow stops due to the

jammed material, so standard pouring does not work

any more. During shaking, we can see the amount is

increasing. Thus, shaking is also a possible way for

the robot to solve jamming.

Next, we investigate the performance of tapping.

This skill uses the free gripper to tap, so we start

from the setup shown in Fig. 4(d). The robot grasps

a cup with the left gripper while the right gripper

stays above the cups. In order to touch the right



Fig. 8: Comparison of the standard pouring and
tapping.

gripper to the cup, we define a tapping pose as illus-

trated in Fig. 5, which is a constant vector in the cup

frame. Fig. 8 shows a part of trajectories of the stan-

dard pouring and the tapping. From this comparison,

we can see that using tapping, the robot can pour the

material slowly; in addition, the noise of amount es-

timation from the camera is reduced. Thus, tapping

enables the robot to pour accurately. However, we

have not obtained a successful result yet; since the

amount of initial flow is large, the accuracy of pour-

ing with tapping was not good.

4. Conclusion
In this paper, we investigated a way for robots to

learn pouring from human demonstrations. Pouring,

shaking, and tapping were modeled with finite state

machines, and implemented on the PR2 robot. The

real robot experiments were mostly successful. Future

work is expanding the coverage of skill and making a

knowledge database of skill and situations in order

to enable a robot to pour a wide variety of materials

from a wide range of containers.
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