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Abstract : This paper explores the use of vision-based tactile sensor FingerVision in learning manipulation of fragile objects.
We consider to create utilities with FingerVision that assist learning manipulation of fragile objects. For example the grasp
adaptation is a utility to adjust grasp to an object using slip feedback from FingerVision, which enables a robot to grasp a
range of objects including deformable and fragile ones without accurate grasp plan. Other utilities presented in this paper are
grasp failure detection, evaluation of grasp, emergency stop, and contact-event detection of grasped object. The benefits of
these utilities include reducing the number of learning samples, and increasing the safety of exploration.
The accompanying video: https://youtu.be/V0rwJRv2jdk

1. Introduction

As well as vision, tactile sensation is considered to be
important information in manipulating objects. In the
context of robotic manipulation, a variety of tactile sen-
sors and their applications have been researched. Re-
cently applying artificial intelligence and machine learn-
ing including deep (reinforcement) learning to robot ma-
nipulation becomes popular. However many of them use
vision but do not use tactile sensors. A reason would be
a lack of de facto standard tactile sensors. Another rea-
son is that proper strategies to use tactile sensors in
learning manipulation have not been established.

This paper introduces a vision-based tactile sensor
FingerVision [1] in the context of manipulation learn-
ing. FingerVision provides multimodal tactile sensa-
tion to robots including force and slip distributions, and
shape, pose, and texture of object. It is applied to many
types of robot behavior generation including manipula-
tion [2, 3]. Notably, it is easy and inexpensive to man-
ufacture. Since its manufacturing process and software
are published as open source [4], anyone can reproduce
it. Such an open-source tactile sensor could be a stan-
dard platform of learning manipulation with tactile sen-
sors.

This paper demonstrates utilities with FingerVision
that assist learning manipulation. A part of this work
is inspired by palmar grasp reflex of infants (e.g. [5]).
When an object is placed in the hand of an infant, the
infant reflectively closes the fingers. Such a grasp reflex
might play an important role in learning grasping ob-
jects. We explore to create preprogrammed behaviors
to assist learning manipulation. Concretely, we intro-
duce the following assistive utilities:
• Grasp adaptation: Adjusting grasp to an object

with slip feedback from FingerVision. It enables
a robot to grasp a range of objects including de-
formable and fragile ones without accurate grasp plan.
This idea was initially explored in [3] that demon-
strated the robot can grasp a wide range (around
30 kinds) of deformable and fragile objects without
vision and parameter adjustment for each object.

• Grasp failure detection: Detecting grasp failure such
as dropping an object.

• Evaluation of grasp: Learning manipulation needs
to gather samples. In the framework of reinforce-
ment learning, we use rewards. From a rich infor-
mation of FingerVision, we create an evaluation of
grasp.

• Emergency stop: When unexpectedly large force
is applied to the fingers, we stop the motion of the
robot. FingerVision is useful to detect such forces.

• Contact-event detection of grasped object: With a
tactile sensor, the robot can sense force applied to
the grasped object, and contact (collision) event on
it. Such an event detection is useful to use tools, and
place an object on a table.
The benefits of these utilities in learning manipu-

lation would be: (1) reducing the number of samples,
(2) increasing the safety of exploration, and (3) increas-
ing the accuracy of evaluation.

Related Work

There are much work of robotic manipulation with tac-
tile sensors. The basic one is grasping [6, 7, 8, 9] where
tactile sensors are used to improve the grasp. In [10],
a regrasping strategy was studied where the quality of
grasp is estimated from the tactile sensing, and the re-
grasp is executed when the grasp is unstable. Tactile
sensors are also used in other tasks such as opening a cap
of bottle [6], rotating a cylinder [11], peg-in-hole [12],
inserting a USB connector [13], cutting fruits [1], and
in-hand manipulations [14, 15, 2].

In the context of manipulation learning with tac-
tile sensors, contour-following control was learned with
tactile sensors and reinforcement learning in [16] that
was applied to close a ziplock bag. In [17], an active
exploration was developed to search an object in un-
known workspace and learn to discriminate the object.
In [18], a tactile-based grasp learning strategy was stud-
ied where a touch based object localization and a tactile
based regrasping methods were developed.

The remark of our work is proposing the practical
use of tactile sensors especially FingerVision in manip-
ulation learning. Although we demonstrate the use in
learning grasping, the strategies are applicable to other
tasks.



Fig. 1: Conceptual design of FingerVision (a, b) and its
prototype installed on Baxter electric parallel gripper
(c).

Fig. 2: Example of sensing when pushing the sensor by
finger. Force distribution, slip, and object (finger) are
detected.

2. FingerVision

FingerVision is a vision-based tactile sensor consisting of
elastic and transparent skin made with silicone, frame
made with 3D printed support and acrylic, and cam-
eras. Fig. 1 shows the conceptual structure. Markers
are placed on the surface of the skin for detecting skin
deformation to estimate external force distribution.

The raw measurement from FingerVision is image
sequence. We use several computer vision methods for
estimating force distribution, slip distribution, and ob-
ject pose. Estimating force distribution is achieved by
tracking the markers whose movement tells us the defor-
mation of the silicone skin. Estimating slip and object
pose are done by directly analyzing the camera stream.
We refer to such computer vision for nearby objects as
proximity vision. Fig. 2 shows an example of marker
tracking where the red bars highlight the marker move-
ment, and detecting nearby-object and slip. Refer to [2]
for the details.

3. Assistive Utilities with

FingerVision

This section describes the assistive utilities with Fin-
gerVision in the context of manipulation learning.

3.1 Grasp Adaptation

Grasp adaptation is a control to adapt grasp to an un-
known object where the gripper is controlled to avoid
slip. In other words, this is a feedback control of slip.
Grasping is considered as a control to prevent slip. With
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Fig. 3: Control scheme of the grasp adaptation. The
detection of grasp failure and recovery, and emergency
stop are unified.

a sensor that can detect slip, we can create a control
strategy to prevent slip by adjusting the grasping force.

The sensitivity of slip of FingerVision is very high.
Since it uses vision to detect slip, it does not depend
on the contact force from the object. As the result,
FingerVision can sense slip of lightweight objects such
as origami arts.

Slip feedback control with FingerVision enables robots
to adapt a grasp to a range of objects including lightweight,
heavy, fragile, and deformable objects [3]. This means
that even if a learning component outputs inaccurate
grasp parameters, the slip feedback control may be able
to correct the grasp. Thus the number of trials could be
reduced.

The slip feedback control is implemented with a lifting-
up motion. A robot tries to lift up an object with slip
feedback control for the gripper. If the grasping force is
not enough to hold the object, the slip feedback control
adjusts the grasp. We refer to this controller as the grasp
adaptation controller. Fig. 3 shows the control scheme
of the grasp adaptation. First, the robot tries to bring
up the object (BringTest) with the slip feedback con-
trol (slipavd). This motion is performed slowly so that
the gripper can adapt the grasp to the object. Then the
robot lifts it up to the final height. This motion is fast,
while the slip feedback control is still active to adjust
the grasp.

3.2 Grasp Failure Detection

Grasp failure detection is used to detect the fall of the
grasped object. For this purpose, we use the object area
on the images of FingerVision obtained by the proximity
vision. If the area of the object becomes less than a
ratio of the object area observed at the beginning of
grasping, we consider the grasp has failed. Such a grasp
failure happens when transporting an object, and trying
to grasp an object.

In this paper, we combine the grasp failure detection
and the grasp adaptation. If a grasp failure is detected
during the grasp adaptation control (dropped the ob-
ject when lifting it up), we make the robot try grasp-



ing again. Fig. 3 shows the control scheme of the grasp
adaptation with the grasp failure detection. When the
grasp failure is detected (dropped), the robot opens the
gripper, moves back to the initial height, closes the grip-
per to the previous width, and tries the grasp adaptation
again.

3.3 Evaluation of Grasp

In learning grasping, the evaluation of grasp is necessary
as a part of the dataset. FingerVision can provide such
an evaluation potentially in many ways. For example,
(1) Evaluation by area: comparing the area of object
before and after a grasp that indicates the amount of
slip during grasping. (2) Alternatively we can use the
position and orientation estimate. (3) Analyzing Fin-
gerVision images in more detail would give a damage to
the object although we need advanced computer vision
algorithms. In the implementation of this paper, we use
(1).

3.4 Emergency Stop

In learning manipulation, a robot may take unexpected
motions that produce large force; for example, push-
ing an object or a table too strongly with the finger.
There are a variety of reasons why such motions are
produced: exploration for improving the policy, error of
visual perception, unexpected movement of the target or
surrounding objects, and so on. Regardless the reason,
such motions would damage the objects, the robot and
the gripper, and the environment including humans.

FingerVision is useful to avoid such motions by de-
tecting unexpected large force. Since a fisheye lens cam-
era is used in FingerVision, it has a wide view including
the fingertip. Even if FingerVision is facing horizontally,
it can still sense the force applied from underneath. Of
course the sensing range of FingerVision is limited; for
example it cannot sense the opposite side of the finger
surface. However we found that it can avoid the most of
unexpected forces in learning grasping since such forces
are produced only when moving the fingers down to the
table or the target object. In these situations, sensing
force from underneath works. Fig. 3 illustrates the ex-
ample use of emergency stop that is integrated into the
grasp adaptation control. Especially unexpected large
force tends to be produced when moving the gripper
back to the initial height (ToInit). When unexpected
large force is detected, the movement is stopped.

3.5 Contact-Event Detection of Grasped

Object

In learning manipulation, knowing the state of a grasped
object is sometimes difficult. For example the pose of
the object after graping is uncertain when it slips dur-
ing grasping as shown in Fig. 4. Such uncertainty of
the state would cause failure of manipulation. Even

Grasp Grasp

Fig. 4: Examples of uncertainty in poses of grasped
objects that are caused by slippage during grasping.

under such uncertainty, the robot can sense some in-
formation of the grasped object through FingerVision;
e.g. external force applied to the grasped object, and
contact-event (collision) of the grasped object. Such a
contact-event detection of grasped object is useful to au-
tomate placing the object on a table. The uncertain if
the object is touching the table or not is resolved with
the contact-event detection. It can tell the robot when
to release the object.

In our implementation, we use the force and slip in-
formation from FingerVision to detect a contact-event.
When grasping an object strongly, the force signal is
effective to detect a force applied to the object. On
the other side, the slip signal is useful when grasping
a lightweight object such as an origami art, since the
force used to grasp the object is too small to measure,
but the slip is sensitively detected since it is obtained
from image analysis.

4. Experiment

As a case study to using the assistive utilities with Fin-
gerVision, we explore a random pick-and-place of de-
formable and fragile objects.

4.1 Robot System Overview

We use a collaborative robot Universal Robots UR3 as
a robot arm that has 6 degrees of freedom (DoF) and
is driven by joint position or velocity commands. The
robot accepts the joint velocity commands at 125 Hz.
A 3D printed gripper actuated by a Dynamixel servo is
mounted on the wrist of the robot that has 1 DoF. The
servo is operated with the position control mode at 60
Hz, while the state is observed at 40 Hz. Two FingerVi-
sion sensors are attached on the fingers of the gripper.
The data from FingerVision is processed at 30 Hz for ob-
taining force and slip distributions, and object area and
pose. A wide-view camera is attached on the palm of the
gripper that is used to find an object on a table. We do
not use other external sensors. These devices are inte-
grated with the control box of UR3, a Raspberry Pi 3B
for streaming FingerVision camera data over Ethernet,
another Raspberry Pi for streaming the palm camera,
and a laptop PC with the Intel Core i7-8550U CPU.
The laptop PC processes the FingerVision and palm
camera data, computes the behavior described below,
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Fig. 5: Overview of the robot system.

begin

exit(success)

ToInit

ctrlz(0)

large force

PlanGrasp MoveH

pgrasp=(x,y,θ,g0)
ctrl(x,y,θ,g0)

MoveV GraspAdapt

ctrlz(0)

MoveH

ctrl(x0,y0,θrand)

MoveV OpenGrip
slip or force

Placing

Grasping

exit(failure)exit(failure)

Fig. 6: Pick-and-place with the assistive utilities.

and sends control commands to the control box of UR3.
Fig. 5 shows the overview of the robot system.

4.2 Pick-and-Place with Assistive Utili-

ties

Fig. 6 shows the behavior design of pick-and-place where
the assistive utilities with FingerVision are introduced.
In the grasp adaptation (GraspAdapt), the grasp adap-
tation control, the grasp failure detection, and the emer-
gency stop are used (cf. Fig. 3). In the Grasping part,
another emergency stop is used at MoveV (moving verti-
cally the gripper down to the table).

In the Placing part, the contact-event detection of
the grasped object is used to determine the timing to
open the gripper. Actually we use the slip and the force
detection.

4.3 Grasp Planning

We assume a 2D grasping, i.e. the robot grasps an ob-
ject always at the same height. The grasp parameters
consist of 4 elements: the horizontal position (x, y),
the orientation (rotation around z-axis), and the grip-
per width.

Planning grasping parameters is formulated as an
optimization problem. This planner takes a reference
grasp as an input. We optimize the grasp parameters
close to the reference with avoiding the infeasibility and
the failure estimated by the grasp estimation model.
The infeasibility considers the collision and the inverse
kinematics solvability. The grasp estimation model esti-
mates the probability of grasp success implemented by
neural networks.

The objective (cost) function takes an infinite value
when the grasp is infeasible. Otherwise the cost function
is given by:

L(pgrasp) = (1 + 10000apenetration)
2

+ (100pfailure)
2

+ [0.01, 0.01, 0.001, 0] · (pgrasp − pref) (1)

where pgrasp denotes the grasp parameters, pref denotes
a reference grasp, pfailure denotes a probability of failure
computed by the neural networks, apenetration denotes
the area of penetration, and dot · denotes inner product.
The best grasp parameters are obtained by minimizing
the cost function with respect to the grasp parameters
pgrasp. We use a gradient-free optimizer CMA-ES (Co-
variance Matrix Adaptation-Evolution Strategy) devel-
oped by Hansen [19].

4.4 Result

We repeat the pick-and-place behavior with random pa-
rameters to see if the proposed assistive utilities work.
Two parameters are randomly decided: the reference
grasp used in the grasp planning, and the orientation
of placing the object. We use two types of objects:
an origami box and bananas. During the experiment,
the neural networks of the grasp estimation model are
trained with the samples obtained through the execu-
tion.

Fig. 7 shows some representative scenes in an exe-
cution where the robot attempted to grasp an origami
box. In the view of the palm camera, the contour de-
tection of the target object (origami box) is shown. The
robot fingers are masked. In the planning result, we can
see the difference between the reference grasp generated
randomly and the planned grasp. The reference grasp
is infeasible (the fingertips are penetrating the object),
while the planned grasp looks feasible. In the grasp
adaptation, the robot adapted the grasp to the origami
box where the slip feedback control with FingerVision
was used. Note that without the grasp adaptation, the
robot could not have picked up the object. The view
of FingerVision after the grasp adaptation is also shown
in the figure where are no slip points. In the placing
phase, we can see that the robot stopped the motion
before the fingertips reach the table. When FingerVi-
sion detected slip, the robot stopped the motion. The
view of FingerVision at the slip detection is shown in
the figure where we can see slip points.

Fig. 8 shows the change of success rate. The horizon-
tal axis shows the number of runs (grasp attempts), and
the vertical axis shows the success rate. Each marker
is plotted when the training of the neural networks is
done. In the training, all samples corrected before are
used. The success rate is the rate of success samples
between the current and the previous markers. Failures
due to the detection of object contours are not counted
as no actual grasp is attempted in such cases. Learn-
ing grasping bananas is conducted after that of origami
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Fig. 7: An execution scenes of grasping origami box.

Fig. 8: Learning curve.

box where the samples from origami box are also used.
The graph shows that in each case, the grasping perfor-
mance is improved, and grasping bananas is more diffi-
cult than grasping origami box. Note that in our prelim-
inary experiments, we tested to learn grasping bananas
only with the samples obtained from grasping bananas.
The performance was worse than that of grasping ba-
nanas in Fig. 8. Thus, the reason why the performance
of grasping bananas is worse than that of origami box
in Fig. 8 is not the sample sharing, but the difficulty of
grasping bananas.

Through the experiments, we found that the assis-
tive utilities with FingerVision worked in learning grasp-
ing. The grasp adaptation and the contact-event detec-
tion of grasped object are as shown in Fig. 7. Fig. 9
shows the case where the robot dropped the target ob-
ject (banana) and recovered to grasp it again. The fail-

BringTest GraspInit ToInit GraspPrev
dropped

BringTest

Fig. 9: Detection of drop and recovery to grasp the
object again.

Large force detectedLarge force detected

Fig. 10: Emergency stop in grasping a banana.

ure detection of grasp was used. Fig. 10 shows the emer-
gency stop in grasping a banana. The banana was under
a fingertip and they collided, which caused large force.

5. Conclusion

This paper explored the use of vision-based tactile sen-
sor FingerVision in manipulation learning of robots. Es-
pecially we considered manipulating deformable and frag-
ile objects. We created utilities with FingerVision that
assist learning manipulation. The utilities explored in
this paper are grasp adaptation, failure detection of
grasp, evaluation of grasp, emergency stop, and contact-
event detection of grasped object. We applied these as-



sistive utilities to learning to grasp deformable and frag-
ile objects (origami box and bananas). The experiments
demonstrated that the developed assistive utilities are
useful.
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