
Research Statement
Akihiko Yamaguchi (info@akihikoy.net)

Introduction
My main research interest is autonomous behavior generation of robots. Current robotics

technologies have succeeded in motion planning for collision avoidance, and grasping and ma-
nipulating rigid objects. However robots still have a limited use; one reason is their less capa-
bility in manipulating non-rigid objects. Our everyday activities involve many such manipula-
tions, that are necessary to home-care robots. For example in a cooking video of humans, we
will see many complicated manipulation skills such as cutting vegetables/meats, and pouring
salt/ketchup/cheese. Programming such behaviors on robots is very expensive; even if a be-
havior is programmed, it will not generalize widely, i.e. will fail at slightly different situations.
We need a behavior generation system that can generalize behaviors to unseen situations, and
even when the generalization fails, it should adapt behaviors through learning. Such a system
should be scalable to complicated tasks such as cooking. The central problem is planning
under unknown (unmodeled) dynamics, known as reinforcement learning (RL) problem. So
far I studied model-free RL approach (mostly in doctoral thesis) and model-based RL approach
(postdoctoral work at CMU).

Previous and Current Work
In my PhD thesis I explored model-free reinforcement learning (RL) of robot behaviors

with less prior knowledge about the tasks. A popular approach of RL in robotics is a direct
policy search where policies are directly trained from experience typically using gradients (e.g.
[9, 4, 13]). However these methods often converge to poor local maxima due to their exploration
noise model (typically Gaussian noise around a policy). In practical domains (e.g. ball-in-cups),
human demonstrations are used as initial policies. We developed a method DCOB to generate
a set of primitive actions that are small transitions in state space (Fig.(a)), and applied the
Peng’s Q(λ)-learning algorithm [8] with a Gaussian-network function approximator and a soft-
max exploration [25]. The exploration noise is similar to a multimodal Gaussian, which provides
wider exploration than the (unimodal) Gaussian noise around a policy. We applied the proposed
method to obtaining whole-body motions such as crawling, turning, and jumping in simulation
(Fig.(b)). The robot obtained these motions only from reward functions. We also applied it to
a crawling task of a 6-legged spider-like robot where the robot could obtain a motion in 20 min
from scratch (no simulation). The developed methods were also published as an open source
software SkyAI (http://skyai.org/)[22].
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With DCOB, I achieved an adaptation of robots with degrees of freedom (DoF) up to 7
(some joints were coupled in the experiments). For a larger DoF and wider generalization,
I explored a curriculum learning [3], and a modular system. The system has a library of
policies. The policies are automatically created by combining different strategies, including
learning-from-scratch with DCOB, transfer-learning-with-freeing-DoF (increasing the DoF by
decoupling joint constraints), and inter-environment-transfer. The combination of learning-
from-scratch and transfer-learning-with-freeing-DoF enables a curriculum learning like learning
from easy missions [1]. For example in learning crawling, robots learn gradually from a sim-
pler configuration (lower DoF, lower speed) to complicated configurations (higher DoF, higher
speed). The robots could learn behaviors with full DoF (such as 18) from less prior knowl-
edge [24]. The inter-environment-transfer enables learning in different types of environments
(e.g. terrain types)[26]. We introduced an environment class estimation which may be an
unseen environment. In case of an unseen environment, the system uses inter-environment-
transfer to learn a new policy based on existing ones. The experiments of a crawling task of a
spider-like robot in different terrain types demonstrated the adaptability and the generalization
over the environments (Fig.(c))[23]. We found that a second-best policy was better for the
inter-environment transfer (Fig.(d)), which might be due to overfitting of the best policy.

Through the above work, I noticed that it was still far from practical domains. For example
applying to cutting or pouring task is difficult, since in these tasks the state-action space is huge
and the solutions exist only on narrow manifolds. Discrete dynamics also makes learning more
difficult; e.g. robots can move an object during grasping it. In Carnegie Mellon University,
I started to work on robot pouring as a case study of complicated manipulation in order to
establish an effective reinforcement learning framework. We considered a general pouring task:
moving material including liquids and powders from a container to a receiver. This work followed
learning from demonstration framework. Humans use many strategies in pouring, for example
pouring water by tipping a bottle, shaking a salt bottle, and tapping a coffee powder bag.
Our hypothesis is that using a range of strategies (skills) enables a behavior to generalize over
situations. On a PR2 robot, we implemented some skills, motion planning for skill parameters
(e.g. grasping poses and collision free trajectories), and learning methods for selecting a skill and
adjusting skill parameters (e.g. shaking axis and speed). Our behavior model could pour various
materials from a range of containers (Fig.(e)(f); video: https://youtu.be/GjwfbOur3CQ)[21].
We achieved adaptation to variations including shapes of containers, materials, initial poses of
containers and the robot, and target amount. However it was difficult to generalize the behavior
to unseen container shapes and materials. Since pouring involves dynamics that are hard to
model such as liquid flow, and we need to plan a sequence of primitive actions, it is formulated
as a reinforcement learning (RL) problem. We considered many RL approaches, and decided
to focus on model-based approach since we can expect a good generalization and reusability of
learned components [15, 18]. In a model-free RL, we train policies directly, while in a model-
based RL, we train dynamical models and optimize policies by solving dynamic programming.
We can use existing engineered models such as collision models together with learned models.

As a model-based method, we developed a stochastic version of neural networks to learn
models [19], and a differential dynamic programming for optimization over graph-structured
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dynamical systems [17]. The proposed method is a version of deep reinforcement learning [18].
Pouring behavior involves selections of skills (discrete-action optimization) and adjustments of
skill parameters (continuous-action optimization). Such a dynamical system can be described
as a graph structure (Fig.(g)). Differential dynamic programming (DDP; [6]) is for a sequence
of continuous actions, and is applicable to linear structured dynamical systems only. We used
graph theory to analyze graph structures (e.g. unrolling a graph), and derived DDP equations
for structures with bifurcations. The proposed method is referred to as Graph DDP [17]. In
order to handle uncertainty of models, Graph DDP is based on a stochastic version of DDP [7].

On the other side, we explored modeling methods of component dynamical systems. A non-
parametric method (locally weighted regression; LWR [2]) and a parametric method (neural
networks) are investigated [14, 19]. Since we are using stochastic DDP, these regression models
need to be capable of modeling uncertainty and propagating probability distributions. In [19],
we extended neural networks for such capabilities. Compared to LWR, the extended neural
networks performed better in the model-based RL scenario of pouring. With Graph DDP and
the extended neural networks, we achieved generalization of pouring behavior over material
types and container shapes (Fig.(h))[17].

I emphasize that a reason of this success is supported by task-level modeling of dynamics.
Task-level dynamics model the input and output relation of a skill. Task-level models can avoid
cumulative error of time-integral unlike a differential equation model of dynamics. Recently,
in order to make behavior generation more flexible, I started to work on semantic (symbolic)
representation and reasoning. This work is done as a collaboration with Professor Michel Beetz
in University of Bremen where we are extending an ontology for robot reasoning KnowRob [12]
to be capable of behavior reasoning. With a flexible reasoning, we can generate graph structures
of behaviors, which is useful for, for example, failure recovery.

Side Projects: In addition to the behavior learning and reasoning research, I also work
on relative projects. Major ones include multimodal optical skin sensor for manipulation of
deformable objects (Fig.(i))[16] with which we implemented a cutting motion (Fig.(l)(m)), stereo
vision of liquid and particle flow for robot pouring (Fig.(n))[20], human-safe robot control and
motion planning (Fig.(o))[10, 11], and learning inverse kinematics of an android robot face with
neural networks (Fig.(j)(k))[5].
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Future Directions
From the previous work I have learned that a modular or library based approach where we

combine many alternative strategies is effective in intelligent and robust behavior generations.
Unification of many different types of reasoning, learning, and representations would advance
the intelligence and robustness. My future research direction is such a unification and its ver-
ification in practical domains. A behavior generation system I will create consists of different
types of libraries, reasoning and generating modules, learning modules, an ontology describing
the relations among elements in libraries, and an execution system. Completing and advancing
such a system is the main direction of the next few years. Through this work, following intellec-
tual benefits are expected: 1) Developing a unified architecture of reasoning, learning, actions,
perceptions, and ontology in different levels including numeric, symbolic, and task-level rep-
resentations. 2) Adaptation and generalization of robotic behaviors in practical domains such
as everyday activities of humans. 3) Robust behavior generation by autonomously combining
many different alternative strategies. 4) Learning effective dynamical models and reasoning be-
haviors by combining numeric, symbolic, and task-level representations. 5) Improving efficiency
of learning behaviors across many tasks as the library-based approach increases the reusabil-
ity. 6) Failure detection with forward estimation models, and failure recovery by symbolic and
numeric reasoning with different strategies and learning. 7) Finding analogies based on abstrac-
tion of ontology, and reasoning behaviors with them. 8) Increasing transferability of knowledge
(elements in libraries) among robots and humans. It will enable humans to teach robots in
many different ways, such as kinesthetic teaching, and abstract-level programming like “making
coffee by pouring coffee powder and hot water.” 9) Learning functionality of tools, and reason-
ing about when and how to use tools. 10) Manipulation of non-rigid objects including liquids,
powders, food, thermal and chemical processes, and concepts like “tasty”. In short, I will con-
tribute in the fields of robotics, machine learning, and artificial intelligence. I will collaborate
internally and externally. My current collaborators include Carnegie Mellon University, Nara
Institute of Science and Technology (Japan), and University of Bremen (Germany). I will also
continue side projects including optical skin sensor [16].
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