
Inverse Kinematics Solver for Android Faces
with Elastic Skin

Emarc Magtanong, Akihiko Yamaguchi, Kentaro Takemura, Jun Takamatsu, and
Tsukasa Ogasawara

Abstract The ability of androids to display facial expressions is a key factor towards
more natural human-robot interaction. However, controlling the facial expressions
of such robots with elastic facial skin is difficult due to the complexity of model-
ing the skin deformation. We propose a method to solve the inverse kinematics of
android faces to control the android’s facial expression using target feature points.
In our method, we use an artificial neural network to model the forward kinematics
and minimizing a weighted squared error function for solving the inverse kinemat-
ics. We then implement an inverse kinematics solver and evaluate our method using
an actual android.

Key words: android, artificial neural networks, facial expressions, inverse kinemat-
ics, human-robot interaction.

1 Introduction

One of the main goals in android research is to design robots that are able to interact
with humans in a natural manner. To achieve this objective, efforts have been made
to incorporate the ability to display facial expressions on android robots [3].

Commonly, the android’s face is controlled by directly adjusting the actuator dis-
placements. However, controlling feature points on the android face is more suitable
for making facial expressions since it directly adjusts the appearance of the face [6].
A feature point is defined as a specific point on the android’s face that moves when
displacing the facial actuators. On the other hand, there are only a few methods to
control the android’s face using feature points because solving the inverse kinemat-
ics, which is the relationship between the feature point positions and actuators dis-

E. Magtanong · A. Yamaguchi · K. Takemura · J. Takamatsu · T. Ogasawara
Robotics Laboratory, Nara Institute of Science and Technology, Nara, Japan,
e-mail: {emarc-m,akihiko-y}@is.naist.jp

1

2 E. Magtanong, A. Yamaguchi, K. Takemura, J. Takamatsu, T. Ogasawara

placements, is difficult due to the elastic facial skin of androids. This paper presents
a method for solving the inverse kinematics of such an android face using a machine
learning technique.

The problem in solving for the inverse kinematics of android faces with elastic
skin is that the facial skin surface is deformable. This causes the feature points to
move with each other when displacing the actuators. Specifically, there is coupling
between the feature points. Therefore, it is difficult to formulate an analytic solution
to the inverse kinematics since the feature points are not fixed on a rigid link. Fur-
thermore, specifying target feature points for the inverse kinematics is complicated
because of the coupling problem.

In this paper, we propose three ideas to solve the inverse kinematics of android
faces. Initially, the forward kinematics of the face is modeled using an artificial neu-
ral network. The forward kinematics model determines the feature point positions
given the actuator displacements. Artificial neural networks are employed because
of its capability to learn the complex forward kinematics of android faces. Next,
using an iterative minimization technique for an error function, we compute the ac-
tuator displacements that satisfies the specified target feature point positions. Also,
a weighting method is introduced for computing the difference between the target
and the computed feature point positions to address the problem resulting from the
feature points being coupled. Lastly, we propose a face segmentation technique to
group the facial feature points and the actuators. Segmenting the face reduces the
complexity of modeling the forward kinematics and solving the inverse kinematics.

The proposed inverse kinematics solver is validated by conducting several ex-
periments using an actual android. The experimental results demonstrate the ability
of the proposed inverse kinematic solver to control the android’s facial expressions
using target feature points.

There have been several research done to control the facial expressions of an-
droid robots. A method used in [4] retargets captured human facial expressions from
video to an android by converting 2D feature point positions to actuator displace-
ments using partial least squares regression. Another method in [7] retargets human
facial motion capture data to actuator displacements of an android by interpolating
weights of blendshape models. Unlike these methods, our proposed inverse kine-
matics solver will provide a proper solution even for infeasible target feature point
positions.

The rest of this paper is organized as follows. Section 2 proposes the method to
solve the inverse kinematics of the android’s face and the face segmentation tech-
nique. Section 3 describes the experimental results. Lastly, section 4 concludes the
paper.

2 Inverse Kinematics Solver for an Android Face

To model the forward kinematics, we employ an artificial neural network (ANN).
Then, the actuator displacements are computed using an iterative minimization of

Inverse Kinematics Solver for Android Faces with Elastic Skin 3

the difference between the target and the feature point positions computed from the
ANN. Here, a weighting method for the feature points is introduced to handle the
coupling problem. Also, we describe a technique to segment the face of the android.

2.1 Forward Kinematics using Neural Network

To model the forward kinematics, we use a multilayer feedforward ANN that is
composed of an input, an output, and a hidden layer. Concretely, the ANN is defined
as,

x = ANN(u;Θ), (1)

where, Θ denotes the parameters of the neural network and is optimized during
training. The vector u = (u1,u2, ...,uNa) represents the input vector of actuator dis-
placements and x = (x1,y1,z1, ...,xNf ,yNf ,zNf) defines the output vector of feature
point positions, where Na and Nf denotes the number of actuators and feature points
respectively.

For training the ANN, sets of actuator displacements and feature point positions,
D = {un,xn|n = 1,2, ...}, are used. In training the ANN, a backpropagation algo-
rithm is used to optimize the parameter Θ of the ANN. To avoid overfitting, an early
stopping technique is applied during the training [2]. For the experimental section,
we implement this ANN using MATLAB’s Neural Network Toolbox[1]. The num-
ber of neurons in the hidden layer is determined through initial experimentation.

2.2 Solving for the Inverse Kinematics

This section discusses our proposed solution for the inverse kinematics of the an-
droid’s face based on the forward model learned by the ANN. We aim to address
the difficulty of obtaining an analytic solution for the inverse kinematics from the
forward kinematics ANN and solve the coupling problem when specifying target
feature points. To consider these problems, the inverse kinematics is formulated as
the minimization of the weighted squared error of the feature point positions with
respect to the actuator displacements. That is,

min
u

3Nf

∑
i=1

wi

[
ANN (u)[i]− x∗[i]

]2
,

such that, umin j ≤ u j ≤ umax j.

(2)

In Eq. 2, x∗[i] denotes an i-th element of the target feature point position, the subscript
[i] denotes the i-th element of the vector, and (w1,w2, ...,w3Nf) are the weights for
the feature points. The weights handle the coupling problem by emphasizing the
error contribution of each feature point.

4 E. Magtanong, A. Yamaguchi, K. Takemura, J. Takamatsu, T. Ogasawara

2.3 Face Segmentation

The inverse kinematics solver described in section 2.1 and 2.2 is applicable to any
number of feature points and actuators. We refer to the inverse kinematics solver
applied to all feature points and actuators as the full face inverse kinematics solver.
However, we can improve the precision of the inverse kinematics solver by segment-
ing the feature points and actuators. Segmentation means that the feature points and
actuators are grouped to be modeled separately using independent forward kinemat-
ics ANNs. Specifically, the set of all feature points Fw and the set of all actuators
Aw are separated into their subsets: {Fm|m = 1, ...,Ng} and {Am|m = 1, ...,Ng},
where Ng denotes the number of segments.

To determine the segmentation, we measure the effect of each actuator to each
feature point position. Wherein each facial actuator is independently displaced sev-
eral times and the feature point positions are recorded. We then compute the effect
index defined as,

δ j,i =
1
Ns

Ns

∑
n=1

∣∣∣∣∣∣
∣∣∣∣∣∣
xi,n

yi,n
zi,n

−
xi,0

yi,0
zi,0

∣∣∣∣∣∣
∣∣∣∣∣∣ (3)

where Ns denotes the number of samples per each actuator and (xi,n,yi,n,zi,n) and
(xi,0,yi,0,zi,0) denote the current and the neutral (i.e., all facial actuator displace-
ments are at minimum) feature point positions respectively. The effect index indi-
cates the effect of an actuator j to the position of a feature point i.

Using Eq. 3 and a threshold, we can define a subset of feature points Fm which
is affected by an actuator subset Am ∈Aw. Concretely,

Fm = {i|∀i ∈Fw,δ j,i > threshold,∀ j ∈Am}. (4)

To segment properly, the feature point subsets F1, ...,FNg should not overlap with
each other; the same requirement goes for the actuator subsets A1, ...,ANg . Choos-
ing actuator subsets that satisfy these requirements, independent inverse kinematics
solvers can be created for each group of feature points and actuators. The resulting
inverse kinematics solver is referred to as the segmented face inverse kinematics
solver.

3 Experiments of Controlling an Android Face

3.1 Capturing Feature Point Positions

The android used for the evaluation of the proposed method is an Actroid-SIT an-
droid from Kokoro Co. The android’s facial expression is controlled using 11 ac-
tuators. For the detailed explanation about the android and the experimental setup
please refer to [5].

Inverse Kinematics Solver for Android Faces with Elastic Skin 5

(a) Motion capture camera setup. (b) Feature point layout.

Fig. 1: Motion capture setup used for capturing feature point positions.

The android’s feature point positions are captured using a motion capture system
for gathering training data for training the forward kinematics ANN in section 2.1
(see Fig. 1). On the face, 17 feature point markers are placed where significant fea-
ture point movement occurs [7]. For the training data of the forward kinematics
ANN, several actuator configurations such as independent, combination, and ran-
dom actuator displacements are recorded. Feature point positions are recorded while
keeping the actuator displacements stationary. Additional random actuator configu-
rations are captured for testing the generalization of the forward kinematics ANN.

Using the defined feature points shown in Fig. 1(b), the forward kinematics ANN
for the full face inverse kinematics solver has 11 actuators as input and 51 (17 feature
points x 3 dimensions) feature point dimensions as output.

3.2 Grouping Feature Points and Actuators

To segment the feature points and actuators of the android, the method mentioned
in section 2.3 is applied. The threshold value for δ j,i is manually selected through
experimentation. Fig. 2 shows the feature points that are affected by each actuator.
This figure indicates that the feature points and actuators can be segmented into two
parts: the upper face and the lips. The upper face segment has 4 actuator displace-
ments as input and 24 dimensional feature point positions as output, while the lips
segment has 7 actuator displacements as input and 27 dimensional feature point as
output.

3.3 Evaluation of the Forward Kinematics Model

Since the forward kinematics of the android’s face is modeled using an ANN, the
generalization of the model should be evaluated. The generalization measures the
accuracy of the trained ANN when the input data are data not used during training.
This tests if the training data is overfitted by the ANN.

6 E. Magtanong, A. Yamaguchi, K. Takemura, J. Takamatsu, T. Ogasawara

−50 0 50

−60

−40

−20

0

20

40

60

Face Segmentation: Actuator 1, Threshold = 0.6

X−Axis Position (mm)

Y
−

A
x
is

 P
o

s
it
io

n
 (

m
m

)

−50 0 50

−60

−40

−20

0

20

40

60

Face Segmentation: Actuator 2, Threshold = 0.6

X−Axis Position (mm)

Y
−

A
x
is

 P
o

s
it
io

n
 (

m
m

)

−50 0 50

−60

−40

−20

0

20

40

60

Face Segmentation: Actuator 5, Threshold = 0.6

X−Axis Position (mm)

Y
−

A
x
is

 P
o

s
it
io

n
 (

m
m

)

−50 0 50

−60

−40

−20

0

20

40

60

Face Segmentation: Actuator 6, Threshold = 0.6

X−Axis Position (mm)

Y
−

A
x
is

 P
o

s
it
io

n
 (

m
m

)

−50 0 50

−60

−40

−20

0

20

40

60

Face Segmentation: Actuator 7, Threshold = 0.6

X−Axis Position (mm)
Y

−
A

x
is

 P
o

s
it
io

n
 (

m
m

)
−50 0 50

−60

−40

−20

0

20

40

60

Face Segmentation: Actuator 8, Threshold = 0.6

X−Axis Position (mm)

Y
−

A
x
is

 P
o

s
it
io

n
 (

m
m

)

−50 0 50

−60

−40

−20

0

20

40

60

Face Segmentation: Actuator 9, Threshold = 0.6

X−Axis Position (mm)

Y
−

A
x
is

 P
o

s
it
io

n
 (

m
m

)

−50 0 50

−60

−40

−20

0

20

40

60

Face Segmentation: Actuator 10, Threshold = 0.6

X−Axis Position (mm)

Y
−

A
x
is

 P
o

s
it
io

n
 (

m
m

)

−50 0 50

−60

−40

−20

0

20

40

60

Face Segmentation: Actuator 11, Threshold = 0.6

X−Axis Position (mm)

Y
−

A
x
is

 P
o

s
it
io

n
 (

m
m

)

−50 0 50

−60

−40

−20

0

20

40

60

Face Segmentation: Actuator 12, Threshold = 0.6

X−Axis Position (mm)

Y
−

A
x
is

 P
o

s
it
io

n
 (

m
m

)

−50 0 50

−60

−40

−20

0

20

40

60

Face Segmentation: Actuator 13, Threshold = 0.6

X−Axis Position (mm)

Y
−

A
x
is

 P
o

s
it
io

n
 (

m
m

)

Fig. 2: Face segmentation of the android robot at threshold = 0.6.

Table 1: Average Norm Error of the Forward Kinematics Artificial Neural Network.

Model Type Mean (mm) STD (mm)
Segmented Face 0.54 0.30

Full Face 1.15 0.62

The norm error of the feature points are computed between the output feature
point positions of the forward kinematics ANN and actual feature points positions
captured by the motion capture system. This is done over 500 samples of random
actuator displacements and the results are averaged. In this experiment, the full face
forward kinematics ANN and the segmented face forward kinematics ANN are com-
pared. As shown in Table 1 the error is small compared to the average displacement
range of the feature points which is 13.32 mm. This suggests that the forward kine-
matics ANN has good generalization. However, it should be noted that the seg-
mented face has better generalization compared to the full face forward kinematics
ANN. The reason for this is that the complexity of modeling the forward kinematics
is decreased by reducing the dimensions for each segmented ANN.

3.4 Evaluation of the Inverse Kinematics

Next, we evaluate the inverse kinematics solvers using two cases; also, the full face
inverse kinematics solver and the segmented face inverse kinematics solver are com-
pared. First, the target feature point positions captured from random actuator dis-

Inverse Kinematics Solver for Android Faces with Elastic Skin 7

−50 −40 −30 −20 −10 0 10 20 30 40 50

−100

−80

−60

−40

−20

0

20

40

60

Target and Controlled Comparison: Random Actuator

X−Axis Position (mm)

Y
−

A
x
is

 P
o

s
it
io

n
 (

m
m

)

Neutral FPs

Target FPs

Controlled (Segmented Face)

Controlled (Full Face)

(a) Target feature points captured from random
actuator displacements. The Z-axis is omitted.

−50 −40 −30 −20 −10 0 10 20 30 40 50

−100

−80

−60

−40

−20

0

20

40

60

Target and Controlled Comparison: Independent FPs

X−Axis Position (mm)

Y
−

A
x

is
 P

o
si

ti
o

n
 (

m
m

)

Neutral Fps

Target FPs

Controlled (Segmented Face)

Controlled (Full Face)

(b) Independently moved feature points as tar-
get feature points. The Z-axis is omitted.

Fig. 3: Plot comparison of target (target FPs) and controlled feature points.

(a) (b) (c)

(d) (e)

Fig. 4: Fig. 4(b)–(c) are controlled using target feature points from random actuator
displacements (Fig. 4(a)) and correspond to plots in Fig. 3(a). Fig. 4(d)–(e) are con-
trolled using independently moved target feature points and correspond to plots in
Fig. 3(b).

placements is used as input for the inverse kinematics solver. The weights of each
feature point are set to 1 since such target feature points are assured to be feasible.
The resulting feature points are shown in Fig. 3(a). Inspecting the plot, observe that
the target and the controlled feature point positions are close to each other indicating
that the inverse kinematics solver can estimate the actuator displacements.

For the second evaluation, independently displaced feature points are set as target
feature points for the inverse kinematics solver. This verifies if the weighting method
proposed in Eq. 2 solves the coupling problem. The weight of the moved feature
points are assigned as 1 and others as 0.01 to emphasize the moved feature points
during minimization of the error function in Eq. 2. The results in Fig. 3(b) shows

8 E. Magtanong, A. Yamaguchi, K. Takemura, J. Takamatsu, T. Ogasawara

that the controlled feature points are close to the target feature points. This signifies
that the inverse kinematics solver is able to handle the coupling of the feature points.

Furthermore, we can observe from the plots in Fig. 3 that the segmented face
inverse kinematics solver achieves better results than the full face inverse kinemat-
ics solver. The difference can also be seen by visually inspecting the controlled
android face shown in Fig. 4(b)–(e). This is because the full face inverse kinemat-
ics solver considers all the feature points and actuator displacements using a single
ANN which makes modeling the forward kinematics and the minimization process
more complex. This proves that the proposed face segmentation in section 2.3 in-
creased the precision of the inverse kinematics solver.

4 Conclusion

This paper presented a method to solve the inverse kinematics of androids with elas-
tic faces. We addressed the problem of solving the inverse kinematics of such an-
droid faces, that is, the complexity of modeling the deformable face and the coupling
of the feature points. Our proposed method employed an artificial neural network to
model the forward kinematics. Then, the inverse kinematics was solved by using an
iterative minimization technique, where a weighted squared error is introduced to
handle the coupling of the feature points. This solution to the coupling enables the
input of infeasible target feature point positions. Lastly, a face segmentation tech-
nique for grouping the feature points and the actuators was proposed to improve
the accuracy of the inverse kinematics solver. Experimental results showed that the
proposed inverse kinematics solver can control the android’s facial expression using
target feature points.

References

[1] Beale, M., Demuth, H.: Neural network toolbox. For Use with MATLAB, Users Guide, The
MathWorks, Natick (1998)

[2] Bishop, C.: Pattern recognition and machine learning, vol. 4. Springer New York (2006)
[3] Hashimoto, T., Hitramatsu, S., Tsuji, T., Kobayashi, H.: Development of the face robot SAYA

for rich facial expressions. In: Int. Joint Conf. on SICE-ICASE, pp. 5423–5428. IEEE (2006)
[4] Jaeckel, P., Campbell, N., Melhuish, C.: Facial behaviour mapping from video footage to a

robot head. Robotics and Autonomous Systems 56(12, 31), 1042–1049 (2009)
[5] Magtanong, E., Yamaguchi, A., Takemura, K., Takamatsu, J., Ogasawara, T.: Inverse kinemat-

ics solver for an android face using neural network. In: 29th Annual Conf. of the Robotics
Society of Japan, pp. 1Q3–1 (2011)

[6] Tolani, D., Goswami, A., Badler, N.: Real-time inverse kinematics techniques for anthropo-
morphic limbs. Graphical models 62(5), 353–388 (2000)

[7] Wilbers, F., Ishi, C., Ishiguro, H.: A blendshape model for mapping facial motions to an an-
droid. In: Int. Conf. on Intelligent Robots and Systems, pp. 542–547. IEEE (2007)

