
Inverse Kinematics Solver for an Android Face using Neural
Network

*Emarc MAGTANONG, Akihiko YAMAGUCHI, Kentaro TAKEMURA, Jun TAKAMATSU
and Tsukasa OGASAWARA (Nara Institute of Science and Technology)

1. Introduction
An important part of natural human-robot interac-

tion is the ability of robots to display facial expres-
sions. One of the main goals in android research is to
enable androids to show facial expressions for a more
natural human-robot interaction [1]. Many researches
have been done to incorporate facial expressions on
android robots by designing androids equipped with
deformable faces [2] [3] [4]. However, controlling facial
expressions on androids is still an open problem due
to the lack of an inverse kinematics solver for android
faces.
The purpose of this research is to provide a method

for controlling facial expressions of androids by spec-
ifying target feature point positions. A feature point
is defined as a specific position on the android’s facial
skin surface that moves with displacing facial actua-
tors. In general, the goal of the research is to create an
inverse kinematics solution to android faces. In this
research, we define the inverse kinematics as the pro-
cess of determining the actuator displacements given
the target feature point positions.
The problem in solving for the inverse kinematics

of android faces is that the facial skin surface is de-
formable. This results to the feature points to move
with each other. Thas is, there is coupling between
the feature points. Therefore, it is difficult to model
the forward kinematics of the face since feature points
are not fixed on a rigid link. Also, specifying target
feature points for the inverse kinematics is compli-
cated because of the coupling problem.
Two ideas are presented in this paper for the solu-

tion to the inverse kinematics of android faces. Ini-
tially, we model the forward kinematics of the face
by using a neural network. The forward kinematics
model is defined as determining the feature point posi-
tions given the actuator displacements. We use neural
networks because it is capable of learning the complex
forward kinematics due to the feature points being on
a deformable surface. The feature point positions are
captured using a motion capture system. The output
of the motion capture system is the feature point po-
sition in space. Next, using an iteration technique, we
compute for the actuator displacements that satisfies
the specified target feature point positions. In addi-
tion, we introduce a weighting method for computing
the error between the target and computed feature
point positions to handle the coupling problem by
emphasizing the contribution of each feature points.
Both the neural network and the iteration technique
are used to create an inverse kinematics solver for an
android’s face.
To test the proposed inverse kinematics model, we

conducted several experiments using the constructed
inverse kinematics solver. We verified the perfor-
mance of the inverse kinematics solver using two types
of target feature points. First, target feature point

positions are created using random actuator displace-
ments and captured using a motion capture system.
This will test the performance of the inverse kinemat-
ics solver when the coupling of feature points is main-
tained. Next, target feature point positions are cre-
ated manually by displacing a single feature point or
several feature points in order to assess if the weight-
ing error function is suitable for handling the coupling
problem.
Several researches have been done to control an-

droid facial expressions from target feature point po-
sitions. Jaeckel et al. presented a method for control-
ling facial expressions on androids by mapping facial
expressions from video footages [5]. They used active
appearance models to capture 2D positions of feature
points and multilinear Partial Least Squares regres-
sion for converting feature point positions to actua-
tor displacements. Another research done by Wilbers
et al. used a technique in computer animation called
blendshapes for mapping human facial motion capture
data to an android [6]. In their method, target feature
point positions are computed as linear transforms of
key feature point positions called blendshapes models.
The intermediate feature point positions are interpo-
lated from the blendshape models. Then actuator dis-
placements are obtained by computing the weights of
each of the blendshapes. The difference of our pro-
posed method with the previous methods is that, our
inverse kinematics solver can provide a proper solu-
tion even to infeasible target feature point positions.
Researches have also been done to model the inverse

kinematics of manipulators using machine learning
techniques. A research done by Xia et al. uses neu-
ral networks to model the inverse kinematics between
the target end effector position and manipulator joint
angles [7]. For the neural network to learn the inverse
kinematics, it is trained using sets of target end ef-
fector positions as the input and joint angles as the
output. After training, the network can solve for the
joint angles given the target end effector position.
The rest of this paper is organized as follows. Sec-

tion 2 discusses the method we use to solve the inverse
kinematics of an android face. Section 3 describes the
details of the experiments we performed for evaluating
the forward kinematics model and inverse kinematics
solver. Lastly, section 4 concludes the paper.

2. Inverse Kinematics Solver for an An-
droid Face

As stated in section 1, the purpose of this research
is to provide a method for solving the inverse kine-
matics of android faces. In order to create the model,
we first employ a neural network to learn the inverse
kinematics between the actuator displacements and
feature point positions wherein the network’s input
are the actuator displacements and the output are
the feature point positions. We collect training data

RSJ2011AC1Q3-1

第29回日本ロボット学会学術講演会（2011年9月7日〜9日）



using a motion capture system to track the feature
point positions.
Next, using an iteration technique, we compute the

actuator displacements that minimizes the error be-
tween the target and computed feature point positions
solved by the neural network. Here, in order to han-
dle the coupling problem, localized weights for each
of the feature points are introduced into the error.

2·1 Forward Kinematics using Neural Net-
work

To model the forward kinematics of the face, we
train a neural network to learn the forward kinematics
between the actuator displacements and feature point
positions. The neural network has 3 layers which is
comprised of the input, hidden, and output layer. The
activation function of the hidden layer neurons is the
logistic sigmoid function.
The forward kinematics neural network function is

defined as,
x = NN (u,Θ), (1)

where, Θ denotes the weights between the neurons
and is optimized during training. In addition, u rep-
resents the input vector of actuator displacements and
x defines the output vector of feature point positions.
For training the neural network, we collect data us-

ing a motion capture system to record the feature
point positions. That is to say,

D = {un,xn|n = 1, 2, ..., Ns},
u = (u1, u2, ..., uNa) ,

x =
(
x1, y1, z1, ..., xNf

, yNf
, zNf

)
.

(2)

where, Ns is the total training samples for the network
and Na and Nf represent the number of actuators and
feature point vectors respectively.
To train the network, we input these training data

to the neural network to minimize the error function,

E (Θ) =
1

2

Ns∑
n=1

‖NN (un,Θ)− xn‖2 , w.r.t. Θ. (3)

To avoid the problem of overfitting, we separate the
data into a training and a validation set and apply
an early stopping method during the training itera-
tions [8].

2·2 Solving for the Inverse Kinematics

This section discusses our proposed method to solve
for the inverse kinematics of the android’s face. We
aim to deal with two problems. First, the difficulty
of deducing an analytic solution to the inverse kine-
matics when using a neural network. Second, is the
problem of handling the coupling of the feature points.
To consider these problems, we formulate the inverse
kinematics as the minimization of the weighted square
error of the feature point positions with respect to the
actuator displacements, that is,

min
u

Nf∑
i=1

wi [NN (u)− x∗
i ]

2
,

where, uminNa
≤ u ≤ umaxNa

,

(4)

x∗ denotes the target feature point positions and w is
the weight vector for each feature points. The weight

Fig.1 System diagrams of forward kinematics (FK)
model (1) and the inverse kinematics (IK) solver
(2) for android faces.

Fig.2 The Actroid-SIT android.

vector handles the coupling problem by emphasizing
the error contribution of each feature points.
The error function is minimized using a gradient

descent method with multiple starting points for u.
Using multiple starting points increases the chance of
finding the global minimum.
Combining the two methods proposed in section 2·1

and 2·2, we can design the inverse kinematics solver
that computes for the actuator displacements given
target feature point positions. The diagrams of the
proposed forward kinematics model and inverse kine-
matics solver is shown in Fig.1 where x∗ is the vector
of target feature point positions and u is the vector
of actuator displacements.

3. Experiments of Controlling an An-
droid Face

3·1 Actroid-SIT

The android we used for the evaluation our method
is the Actroid-SIT android manufactured by Kokoro,
Co. The skin is constructed from silicone. The an-
droid is shown in Fig.2.
It has 42 pneumatic actuators that can move the

robot from the waist up. The lower part of the an-
droid is not actuated. The android’s face has 13 ac-
tuators. The input of each actuator is a target value
of the actuator displacements which ranges from 0 to
255.
To simplify the modeling for the inverse kinematics

solver, we limit the number of actuators to control.
Specifically, we designed an inverse kinematics solver
to control five actuators, A6, A7, A8, A11, and A12,
which controls the lips. Actuators A9 and A10 were

RSJ2011AC1Q3-1

第29回日本ロボット学会学術講演会（2011年9月7日〜9日）



Table 1 Movement of Actroid Facial Actuators

Actuator Movement
A1 eyebrows raise (both)
A2 eyelids close (both)

A3,A4 left/right horizontal eye gaze
A5 vertical eye gaze/eyelids raise
A6 jaw open

A7,A8 pull upper/lower lip upward
A9,A10 pout upper/lower lip
A11,A12 left/right lip corner pull

A13 raise cheeks

Fig.3 Motion capture setup (left) and marker layout
(right) used in the motion capture experiments.

not included since they have very small contributions
to the movement of lip feature points (see Table 1).

3·2 Capturing Feature Point Positions

We capture feature point positions using a motion
capture system. These data are used to train the neu-
ral network in section 2·1.
Several passive reflective markers are attached to

the android’s face which serves as the feature points
(shown in Fig.3). The markers are placed on the face
where significant feature point movement occurs when
the actuators are displaced. The marker attached on
the nose is used as the origin point to have a uniform
reference coordinate for all captured data.
We place the android robot in the center of the

capture volume to ensure maximum coverage for each
markers.
We record the position of the feature points while

keeping the actuator displacements stationary. To
consider different actuator configurations, we cap-
tured 51 samples of single actuator displacements, 243
samples for combinations of actuator displacements,
and 300 samples of random actuator displacements.
An additional 1000 samples of random actuator dis-
placements are captured to be used for testing the
generalization of the neural network.

3·3 Evaluation of the Forward Kinematics
Model

Since the forward kinematics of the actuator dis-
placements and feature point positions is modeled us-
ing a neural network, it is important to test the gen-
eralization ability of the network. The generalization
ability of the neural network is the measure on how
well the neural network estimates the output when
presented with input data not used during training.
In the case of the forward kinematics model in sec-

tion 2·1, we test the generalization ability by inputting
target feature point positions created using the ran-
dom actuator displacements. This will test if the neu-
ral network overfits the training data.

Fig.4 Bar plot of the movement range of the feature
points (left bar) and the norm error with stan-
dard deviation of feature point positions com-
puted using the forward kinematics model (right
bar).

Fig.5 Plot of the target feature points (target
FP) using data captured from random actua-
tor displacements (dashed) and controlled fea-
ture points (controlled FP) from solver output
applied to the android (dotted dashed). The Z-
axis is omitted.

Fig.6 Image comparison of the resulting face when
the solver output are applied to the android for
the case of target feature points captured from
random actuator displacements.

We then computed the norm error of the neural net-
work output with respect to the target feature point
positions. Next, we plot the results of the norm er-
ror and compare them with the displacement range
of each of the feature points. As shown in Fig.4 the
error of the estimation is significantly smaller than
the range of displacement of the feature points. This
suggests that the neural network for the forward kine-
matics model has good generalization ability.

3·4 Evaluation of the Inverse Kinematics

This section discusses the experiments to evaluate
the inverse kinematics model.
We performed two types of evaluation for the per-

formance of the inverse kinematics solver. First, we

RSJ2011AC1Q3-1

第29回日本ロボット学会学術講演会（2011年9月7日〜9日）



Fig.7 Plot of the target feature points (target
FP) using a manually displaced feature point
(dashed) and controlled feature points (con-
trolled FP) from solver output applied to the
android (dotted dashed). The Z-axis is omitted.

set the target feature point positions as feature points
captured from random actuator displacements. In
this test, the weight of each feature point is set to
1 since it can be assumed that such feature point
positions are feasible. The target feature point po-
sitions are then input to the inverse kinematics solver
and the actuator displacements output is applied to
the android. The resulting feature point positions are
captured in order to be compared with the target fea-
ture points. The feature points comparison is shown
in Fig.5. Inspecting the plot, we see that the target
feature point positions are close to the controlled fea-
ture point positions indicating that the inverse kine-
matics solver can perform well in computing for the
actuator displacements.

In Fig.5, the neural feature point positions are also
shown for the reference of the displacements of the fea-
ture points. The neutral feature point positions refer
to the feature point positions when actuator displace-
ments are 0. The difference of the positions of the
neutral feature points with the target and controlled
feature points is due to some noise and the reattach-
ment of markers when the markers drop during the
motion capture. However, referring to Fig.6, we can
see that appearance of the android for the target and
controlled feature point positions are similar.

The second test we conducted is to input target
feature point positions when we move only a single
or few feature points from the neutral feature point
positions. This will verify if the weighting method
used in the inverse kinematics solver can handle the
coupling of the feature points. We assign the moved
feature point weight to be 1 and the rest to be 0.01.
We then input these target feature point positions and
the weight vector to the inverse kinematics solver and
apply the output to the android. Then we capture the
resulting feature point positions. The plot of the con-
trolled feature point positions in Fig.7 shows that the
weighting method employed in the inverse kinematics
model is able to handle the coupling of the feature
points.

In the first evaluation, the resulting feature point
positions is similar to the target feature point posi-
tions. As for the second scenarios, the coupling of the
feature points is sufficiently handled by the weight-
ing vector. This indicates that the solver can perform
well on both cases.

4. Conclusion
This paper presented a method for modeling for the

inverse kinematics of android faces. We proposed a
solution to the problem of modeling the inverse kine-
matics of android faces such as the complexity in mod-
eling the deformable facial skin surface and handling
coupling of the feature points. To solve for the inverse
kinematics, we first modeled the forward kinematics
using a neural network to estimate the feature point
positions from actuator displacements. Then we de-
fined the inverse kinematics as the minimization of
the error between the target feature point position
and computed feature point positions estimated by
the neural network. To handle the coupling of the
feature points, we introduced a weighting method to
emphasize the error contribution of each of the fea-
ture points. This solution to the coupling, enables
the input of infeasible target feature point positions.
To evaluate our inverse kinematics method, we con-

sidered two cases for the inverse kinematics solver we
implemented. The first scenario verifies the perfor-
mance of the solver for estimating actuator displace-
ments from target feature point positions that main-
tains the coupling of feature points. This assures that
the target feature point positions are feasible for the
android. The second case evaluates for the inverse
kinematics solver performance when only specific fea-
ture points are moved. The displaced feature points
are emphasized in the error computation using the
weighting method we proposed. In both cases, the
performance of the solver is acceptable based on the
comparison of the target and resulting feature point
positions when the solver output was applied to the
android.

References

[1] R. Stiefelhagen, C. Fugen, R. Gieselmann,
H. Holzapfel, K. Nickel, and A. Waibel, “Natu-
ral human-robot interaction using speech, head pose
and gestures,” in Int. Conf. on Intelligent Robots and
Systems, vol. 3, pp. 2422–2427, IEEE, 2004.

[2] J. Oh, D. Hanson, W. Kim, Y. Han, J. Kim, and
I. Park, “Design of android type humanoid robot albert
hubo,” in Int. Conf. on Intelligent Robots and Systems,
pp. 1428–1433, IEEE, 2006.

[3] T. Hashimoto, S. Hitramatsu, T. Tsuji, and
H. Kobayashi, “Development of the face robot saya for
rich facial expressions,” in Int. Joint Conf. on SICE-
ICASE, pp. 5423–5428, IEEE, 2006.

[4] S. Nishio, H. Ishiguro, and N. Hagita, “Geminoid:
Teleoperated android of an existing person,” Hu-
manoid robots-new developments. I-Tech, 2007.

[5] P. Jaeckel, N. Campbell, and C. Melhuish, “Facial be-
haviour mapping–from video footage to a robot head,”
Robotics and Autonomous Systems, vol. 56, no. 12,
pp. 1042–1049, 2008.

[6] F. Wilbers, C. Ishi, and H. Ishiguro, “A blendshape
model for mapping facial motions to an android,” in
Int. Conf. on Intelligent Robots and Systems, pp. 542–
547, IEEE, 2007.

[7] Y. Xia and J. Wang, “A dual neural network for kine-
matic control of redundant robot manipulators,” IEEE
Transactions on Systems, Man, and Cybernetics, Part
B: Cybernetics, vol. 31, no. 1, pp. 147–154, 2001.

[8] C. Bishop, Pattern recognition and machine learning,
vol. 4. Springer New York, 2006.

RSJ2011AC1Q3-1

第29回日本ロボット学会学術講演会（2011年9月7日〜9日）


